These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21194198)

  • 1. Pyrene biodegradation in an industrial soil exposed to simulated rhizodeposition: how does it affect functional microbial abundance?
    Meng L; Zhu YG
    Environ Sci Technol; 2011 Feb; 45(4):1579-85. PubMed ID: 21194198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of simulated rhizodeposition on the relative abundance of polynuclear aromatic hydrocarbon catabolic genes in a contaminated soil.
    Da Silva ML; Kamath R; Alvarez PJ
    Environ Toxicol Chem; 2006 Feb; 25(2):386-91. PubMed ID: 16519298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of rhizodeposition on pyrene bioaccessibility and microbial structure in pyrene and pyrene-lead polluted soil.
    Wei J; Liu X; Wang Q; Wang C; Chen X; Li H
    Chemosphere; 2014 Feb; 97():92-7. PubMed ID: 24188625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of root components of celery on pyrene bioaccessibility, soil enzymes and microbial communities in pyrene and pyrene-diesel spiked soils.
    Wei J; Zhang X; Liu X; Liang X; Chen X
    Sci Total Environ; 2017 Dec; 599-600():50-57. PubMed ID: 28463701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake of selected PAHs from contaminated soils by rice seedlings (Oryza sativa) and influence of rhizosphere on PAH distribution.
    Su YH; Zhu YG
    Environ Pollut; 2008 Sep; 155(2):359-65. PubMed ID: 18331768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhizoremediation prospects of Polyaromatic hydrocarbon degrading rhizobacteria, that facilitate glutathione and glutathione-S-transferase mediated stress response, and enhance growth of rice plants in pyrene contaminated soil.
    Singha LP; Sinha N; Pandey P
    Ecotoxicol Environ Saf; 2018 Nov; 164():579-588. PubMed ID: 30149357
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Zheng X; Ding H; Xu X; Liang B; Liu X; Zhao D; Sun L
    Environ Technol; 2021 Sep; 42(21):3329-3337. PubMed ID: 32065052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid.
    Yi H; Crowley DE
    Environ Sci Technol; 2007 Jun; 41(12):4382-8. PubMed ID: 17626440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of root-exudates concentration on pyrene degradation and soil microbial characteristics in pyrene contaminated soil.
    Xie XM; Liao M; Yang J; Chai JJ; Fang S; Wang RH
    Chemosphere; 2012 Aug; 88(10):1190-5. PubMed ID: 22520968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose and plant exudate enhanced enumeration of bacteria capable of degrading polycyclic aromatic hydrocarbons.
    Thomas JC; Dabkowski RT
    Can J Microbiol; 2011 Dec; 57(12):1067-72. PubMed ID: 22136124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Necrophytoremediation of phenanthrene and pyrene in contaminated soil.
    Shahsavari E; Adetutu EM; Anderson PA; Ball AS
    J Environ Manage; 2013 Jun; 122():105-12. PubMed ID: 23567029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms.
    Lu YF; Lu M
    J Hazard Mater; 2015 Mar; 285():535-41. PubMed ID: 25534968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil.
    Sawulski P; Clipson N; Doyle E
    Biodegradation; 2014 Nov; 25(6):835-47. PubMed ID: 25095739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential responses of eubacterial, Mycobacterium, and Sphingomonas communities in polycyclic aromatic hydrocarbon (PAH)-contaminated soil to artificially induced changes in PAH profile.
    Uyttebroek M; Spoden A; Ortega-Calvo JJ; Wouters K; Wattiau P; Bastiaens L; Springael D
    J Environ Qual; 2007; 36(5):1403-11. PubMed ID: 17766819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil.
    Sun TR; Cang L; Wang QY; Zhou DM; Cheng JM; Xu H
    J Hazard Mater; 2010 Apr; 176(1-3):919-25. PubMed ID: 20005625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene.
    Gao Y; Li Q; Ling W; Zhu X
    J Hazard Mater; 2011 Jan; 185(2-3):703-9. PubMed ID: 20956057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat.
    Shahsavari E; Adetutu EM; Taha M; Ball AS
    J Environ Manage; 2015 May; 155():171-6. PubMed ID: 25819570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of ¹³C-labeled pyrene in soil-compost mixtures and fertilized soil.
    Adam IK; Miltner A; Kästner M
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9813-24. PubMed ID: 26216241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA stable-isotope probing identifies uncultivated members of Pseudonocardia associated with biodegradation of pyrene in agricultural soil.
    Chen SC; Duan GL; Ding K; Huang FY; Zhu YG
    FEMS Microbiol Ecol; 2018 Mar; 94(3):. PubMed ID: 29462300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation and removal mechanisms in Bouteloua curtipendula growing in sterile hydrocarbon spiked cultures.
    Reynoso-Cuevas L; Gallegos-Martínez ME; Cruz-Sosa F; Gutiérrez-Rojas M
    Int J Phytoremediation; 2011 Jul; 13(6):613-25. PubMed ID: 21972507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.