These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 21194204)
21. Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Wang Y; Sun T; Paudel T; Zhang Y; Ren Z; Kempa K Nano Lett; 2012 Jan; 12(1):440-5. PubMed ID: 22185407 [TBL] [Abstract][Full Text] [Related]
22. ZnO nanosheets decorated with CdSe and TiO2 for the architecture of dye-sensitized solar cells. Kim YT; Park MY; Choi KH; Tai WS; Shim WH; Park SY; Kang JW; Lee KH; Jeong Y; Kim YD; Lim DC J Nanosci Nanotechnol; 2011 Mar; 11(3):2263-8. PubMed ID: 21449378 [TBL] [Abstract][Full Text] [Related]
23. Plasmon-Induced Broadband Light-Harvesting for Dye-Sensitized Solar Cells Using a Mixture of Gold Nanocrystals. Zhang Y; Sun Z; Cheng S; Yan F ChemSusChem; 2016 Apr; 9(8):813-9. PubMed ID: 27110902 [TBL] [Abstract][Full Text] [Related]
24. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327 [TBL] [Abstract][Full Text] [Related]
25. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. Xu R; Wang X; Song L; Liu W; Ji A; Yang F; Li J Opt Express; 2012 Feb; 20(5):5061-8. PubMed ID: 22418311 [TBL] [Abstract][Full Text] [Related]
26. One-dimensional (1D) ZnO nanowires dye sensitized solar cell. Kiliç B; Wang L; Ozdemir O; Lu M; Tüzemen S J Nanosci Nanotechnol; 2013 Jan; 13(1):333-8. PubMed ID: 23646734 [TBL] [Abstract][Full Text] [Related]
27. Improvement in performances of dye-sensitized solar cell with SiO2-coated TiO2 photoelectrode. Mohan VM; Shimomura M; Murakami K J Nanosci Nanotechnol; 2012 Jan; 12(1):433-8. PubMed ID: 22523998 [TBL] [Abstract][Full Text] [Related]
28. Electrodeposited nanoporous versus nanoparticulate ZnO films of similar roughness for dye-sensitized solar cell applications. Guerin VM; Magne C; Pauporté T; Le Bahers T; Rathousky J ACS Appl Mater Interfaces; 2010 Dec; 2(12):3677-85. PubMed ID: 21082820 [TBL] [Abstract][Full Text] [Related]
29. Plasmonics: New twist on nanoscale motors. Hasman E Nat Nanotechnol; 2010 Aug; 5(8):563-4. PubMed ID: 20689524 [No Abstract] [Full Text] [Related]
30. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Ropers C; Neacsu CC; Elsaesser T; Albrecht M; Raschke MB; Lienau C Nano Lett; 2007 Sep; 7(9):2784-8. PubMed ID: 17685661 [TBL] [Abstract][Full Text] [Related]
31. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition. Wang HW; Ting CF; Hung MK; Chiou CH; Liu YL; Liu Z; Ratinac KR; Ringer SP Nanotechnology; 2009 Feb; 20(5):055601. PubMed ID: 19417348 [TBL] [Abstract][Full Text] [Related]
32. Synergistic effect of surface plasmon resonance and constructed hierarchical TiO2 spheres for dye-sensitized solar cells. Liu Y; Zhai H; Guo F; Huang N; Sun W; Bu C; Peng T; Yuan J; Zhao X Nanoscale; 2012 Nov; 4(21):6863-9. PubMed ID: 23023266 [TBL] [Abstract][Full Text] [Related]
33. High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode. Ma T; Akiyama M; Abe E; Imai I Nano Lett; 2005 Dec; 5(12):2543-7. PubMed ID: 16351212 [TBL] [Abstract][Full Text] [Related]
34. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Akimov YA; Koh WS; Ostrikov K Opt Express; 2009 Jun; 17(12):10195-205. PubMed ID: 19506674 [TBL] [Abstract][Full Text] [Related]
35. Dye-sensitized solar cells incorporating a "liquid" hole-transporting material. Snaith HJ; Zakeeruddin SM; Wang Q; Péchy P; Grätzel M Nano Lett; 2006 Sep; 6(9):2000-3. PubMed ID: 16968015 [TBL] [Abstract][Full Text] [Related]
36. Effects of size-controlled TiO2 nanopowders synthesized by chemical vapor condensation process on conversion efficiency of dye-sensitized solar cells. Kim WB; Lee JS J Nanosci Nanotechnol; 2013 Jul; 13(7):4622-6. PubMed ID: 23901483 [TBL] [Abstract][Full Text] [Related]
37. Optimization of a quasi-solid-state dye-sensitized solar cell employing a nanocrystal-polymer composite electrolyte modified with water and ethanol. Yang Y; Zhou CH; Xu S; Zhang J; Wu SJ; Hu H; Chen BL; Tai QD; Sun ZH; Liu W; Zhao XZ Nanotechnology; 2009 Mar; 20(10):105204. PubMed ID: 19417514 [TBL] [Abstract][Full Text] [Related]
38. Light trapping in silicon nanowire solar cells. Garnett E; Yang P Nano Lett; 2010 Mar; 10(3):1082-7. PubMed ID: 20108969 [TBL] [Abstract][Full Text] [Related]
39. Recent progress in ZnO-based nanostructured ceramics in solar cell applications. Loh L; Dunn S J Nanosci Nanotechnol; 2012 Nov; 12(11):8215-30. PubMed ID: 23421200 [TBL] [Abstract][Full Text] [Related]
40. Nanoimprint lithography for high-efficiency thin-film silicon solar cells. Battaglia C; Escarré J; Söderström K; Erni L; Ding L; Bugnon G; Billet A; Boccard M; Barraud L; De Wolf S; Haug FJ; Despeisse M; Ballif C Nano Lett; 2011 Feb; 11(2):661-5. PubMed ID: 21302973 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]