These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 21194211)

  • 21. Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover.
    Stegen JC; Fredrickson JK; Wilkins MJ; Konopka AE; Nelson WC; Arntzen EV; Chrisler WB; Chu RK; Danczak RE; Fansler SJ; Kennedy DW; Resch CT; Tfaily M
    Nat Commun; 2016 Apr; 7():11237. PubMed ID: 27052662
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Research advances in macroinvertebrate ecology of the stream hyporheic zone].
    Zhang YW; Yuan XZ; Liu H; Ren HQ
    Ying Yong Sheng Tai Xue Bao; 2014 Nov; 25(11):3357-65. PubMed ID: 25898637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Geochemical Characteristics of Lateral Hyporheic Zone Between the River Water and Groundwater, a Case Study of Maanxi in Chongqing].
    Zhang Y; Yang PH; Wang JL; Xie SY; Chen F; Zhan ZJ; Ren J; Zhang HY; Liu DW; Meng YK
    Huan Jing Ke Xue; 2016 Jul; 37(7):2478-2486. PubMed ID: 29964453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterizing the capacity of hyporheic sediments to attenuate groundwater nitrate loads by adsorption.
    Meghdadi A
    Water Res; 2018 Sep; 140():364-376. PubMed ID: 29751318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A large flood resets riverine morphology, improves connectivity and enhances habitats of a regulated river.
    Aramburú-Paucar JM; Martínez-Capel F; Puig-Mengual CA; Muñoz-Mas R; Bertagnoli A; Tonina D
    Sci Total Environ; 2024 Apr; 919():170717. PubMed ID: 38331283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using EMMA and MIX analysis to assess mixing ratios and to identify hydrochemical reactions in groundwater.
    Tubau I; Vàzquez-Suñé E; Jurado A; Carrera J
    Sci Total Environ; 2014 Feb; 470-471():1120-31. PubMed ID: 24246935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Groundwater-surface water interaction and its role on TCE groundwater plume attenuation.
    Chapman SW; Parker BL; Cherry JA; Aravena R; Hunkeler D
    J Contam Hydrol; 2007 May; 91(3-4):203-32. PubMed ID: 17182152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Attenuation of mining-derived pollutants in the hyporheic zone: a review.
    Gandy CJ; Smith JW; Jarvis AP
    Sci Total Environ; 2007 Feb; 373(2-3):435-46. PubMed ID: 17173955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical modeling of an abiotic hyporheic mixing-dependent reaction: Chemical evolution of mixing and reactant production zones.
    Santizo KY; Widdowson MA; Hester ET
    J Contam Hydrol; 2022 Dec; 251():104066. PubMed ID: 36054959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drivers of functional diversity in the hyporheic zone of a large river.
    Dole-Olivier MJ; Creuzé des Châtelliers M; Galassi DMP; Lafont M; Mermillod-Blondin F; Paran F; Graillot D; Gaur S; Marmonier P
    Sci Total Environ; 2022 Oct; 843():156985. PubMed ID: 35772536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupled Hydro-Biogeochemical Processes Controlling Cr Reductive Immobilization in Columbia River Hyporheic Zone.
    Liu Y; Xu F; Liu C
    Environ Sci Technol; 2017 Feb; 51(3):1508-1517. PubMed ID: 27996242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal Hyporheic Zone Response to Water Table Fluctuations.
    Malzone JM; Anseeuw SK; Lowry CS; Allen-King R
    Ground Water; 2016 Mar; 54(2):274-85. PubMed ID: 26096382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catchment-scale quantification of hyporheic denitrification using an isotopic and solute flux approach.
    Wexler SK; Hiscock KM; Dennis PF
    Environ Sci Technol; 2011 May; 45(9):3967-73. PubMed ID: 21480587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Freeze core sampling to validate time-lapse resistivity monitoring of the hyporheic zone.
    Toran L; Hughes B; Nyquist J; Ryan R
    Ground Water; 2013; 51(4):635-40. PubMed ID: 23036232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temporal variations in natural attenuation of chlorinated aliphatic hydrocarbons in eutrophic river sediments impacted by a contaminated groundwater plume.
    Hamonts K; Kuhn T; Vos J; Maesen M; Kalka H; Smidt H; Springael D; Meckenstock RU; Dejonghe W
    Water Res; 2012 Apr; 46(6):1873-88. PubMed ID: 22280951
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subsurface biogeochemistry is a missing link between ecology and hydrology in dam-impacted river corridors.
    Graham EB; Stegen JC; Huang M; Chen X; Scheibe TD
    Sci Total Environ; 2019 Mar; 657():435-445. PubMed ID: 30550907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Channel representation in physically based models coupling groundwater and surface water: pitfalls and how to avoid them.
    Käser D; Graf T; Cochand F; McLaren R; Therrien R; Brunner P
    Ground Water; 2014; 52(6):827-36. PubMed ID: 24417289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The hyporheic zone and its functions: revision and research status in Neotropical regions.
    Mugnai R; Messana G; Di Lorenzo T
    Braz J Biol; 2015 Aug; 75(3):524-34. PubMed ID: 26421769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Relationship between groundwater level in riparian wetlands and water level in the river].
    Xu HS; Zhao TQ; Meng HQ; Xu ZX; Ma CH
    Huan Jing Ke Xue; 2011 Feb; 32(2):362-7. PubMed ID: 21528555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating emerging organic contaminant removal in an engineered hyporheic zone using high resolution mass spectrometry.
    Peter KT; Herzog S; Tian Z; Wu C; McCray JE; Lynch K; Kolodziej EP
    Water Res; 2019 Mar; 150():140-152. PubMed ID: 30508711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.