These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 21194240)

  • 41. DNA repair inhibitors: the next major step to improve cancer therapy.
    Barakat K; Gajewski M; Tuszynski JA
    Curr Top Med Chem; 2012; 12(12):1376-90. PubMed ID: 22794314
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rhodanine as a privileged scaffold in drug discovery.
    Tomasić T; Masic LP
    Curr Med Chem; 2009; 16(13):1596-629. PubMed ID: 19442136
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Targeting DNA polymerase ß for therapeutic intervention.
    Goellner EM; Svilar D; Almeida KH; Sobol RW
    Curr Mol Pharmacol; 2012 Jan; 5(1):68-87. PubMed ID: 22122465
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Furanyl-rhodanines are unattractive drug candidates for development as inhibitors of bacterial RNA polymerase.
    Mariner KR; Trowbridge R; Agarwal AK; Miller K; O'Neill AJ; Fishwick CW; Chopra I
    Antimicrob Agents Chemother; 2010 Oct; 54(10):4506-9. PubMed ID: 20660693
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Base excision repair and design of small molecule inhibitors of human DNA polymerase β.
    Wilson SH; Beard WA; Shock DD; Batra VK; Cavanaugh NA; Prasad R; Hou EW; Liu Y; Asagoshi K; Horton JK; Stefanick DF; Kedar PS; Carrozza MJ; Masaoka A; Heacock ML
    Cell Mol Life Sci; 2010 Nov; 67(21):3633-47. PubMed ID: 20844920
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure-activity relationship of a novel group of mammalian DNA polymerase inhibitors, synthetic sulfoquinovosylacylglycerols.
    Hanashima S; Mizushina Y; Ohta K; Yamazaki T; Sugawara F; Sakaguchi K
    Jpn J Cancer Res; 2000 Oct; 91(10):1073-83. PubMed ID: 11050480
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Facile Semisynthesis and Evaluation of Garcinoic Acid and Its Analogs for the Inhibition of Human DNA Polymerase β.
    Gujarathi S; Zafar MK; Liu X; Eoff RL; Zheng G
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33322249
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exploiting domain knowledge for improved quantitative high-throughput screening curve fitting.
    Bergeron C; Moore G; Krein M; Breneman CM; Bennett KP
    J Chem Inf Model; 2011 Nov; 51(11):2808-20. PubMed ID: 21999408
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of sulfoquinovosylacylglycerols, inhibitors of eukaryotic DNA polymerase alpha and beta.
    Hanashima S; Mizushina Y; Yamazaki T; Ohta K; Takahashi S; Sahara H; Sakaguchi K; Sugawar F
    Bioorg Med Chem; 2001 Feb; 9(2):367-76. PubMed ID: 11249129
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis and DNA polymerase alpha and beta inhibitory activity of alkyl p-coumarates and related compounds.
    Nishimura K; Takenaka Y; Kishi M; Tanahashi T; Yoshida H; Okuda C; Mizushina Y
    Chem Pharm Bull (Tokyo); 2009 May; 57(5):476-80. PubMed ID: 19420778
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent developments with rhodanine as a scaffold for drug discovery.
    Kaminskyy D; Kryshchyshyn A; Lesyk R
    Expert Opin Drug Discov; 2017 Dec; 12(12):1233-1252. PubMed ID: 29019278
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Use of rhodanines for the identification and quantitative determination of folic acid. I].
    Svinchuk VS; Kramarenko VF; Turkevich BM
    Farm Zh; 1975; 30(6):51-4. PubMed ID: 1213112
    [No Abstract]   [Full Text] [Related]  

  • 53. Anticancer Profile of Rhodanines: Structure-Activity Relationship (SAR) and Molecular Targets-A Review.
    Szczepański J; Tuszewska H; Trotsko N
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744873
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Selective Inhibition of DNA Polymerase β by a Covalent Inhibitor.
    Yuhas SC; Laverty DJ; Lee H; Majumdar A; Greenberg MM
    J Am Chem Soc; 2021 Jun; 143(21):8099-8107. PubMed ID: 34014094
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of Human DNA Polymerases Eta and Kappa by Indole-Derived Molecules Occurs through Distinct Mechanisms.
    Ketkar A; Maddukuri L; Penthala NR; Reed MR; Zafar MK; Crooks PA; Eoff RL
    ACS Chem Biol; 2019 Jun; 14(6):1337-1351. PubMed ID: 31082191
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Small-Molecule Inhibitor of Human DNA Polymerase η Potentiates the Effects of Cisplatin in Tumor Cells.
    Zafar MK; Maddukuri L; Ketkar A; Penthala NR; Reed MR; Eddy S; Crooks PA; Eoff RL
    Biochemistry; 2018 Feb; 57(7):1262-1273. PubMed ID: 29345908
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fluorescent Probes of DNA Repair.
    Wilson DL; Kool ET
    ACS Chem Biol; 2018 Jul; 13(7):1721-1733. PubMed ID: 29156135
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Translesion DNA Synthesis in Cancer: Molecular Mechanisms and Therapeutic Opportunities.
    Zafar MK; Eoff RL
    Chem Res Toxicol; 2017 Nov; 30(11):1942-1955. PubMed ID: 28841374
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synergistic Effects of an Irreversible DNA Polymerase Inhibitor and DNA Damaging Agents on HeLa Cells.
    Paul R; Banerjee S; Greenberg MM
    ACS Chem Biol; 2017 Jun; 12(6):1576-1583. PubMed ID: 28459532
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair.
    Mentegari E; Kissova M; Bavagnoli L; Maga G; Crespan E
    Genes (Basel); 2016 Aug; 7(9):. PubMed ID: 27589807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.