BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

912 related articles for article (PubMed ID: 21194351)

  • 1. Basic principles and emerging concepts in the redox control of transcription factors.
    Brigelius-Flohé R; Flohé L
    Antioxid Redox Signal; 2011 Oct; 15(8):2335-81. PubMed ID: 21194351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation.
    Hyeon S; Lee H; Yang Y; Jeong W
    Free Radic Biol Med; 2013 Dec; 65():789-799. PubMed ID: 23954472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis.
    Stępkowski TM; Kruszewski MK
    Free Radic Biol Med; 2011 May; 50(9):1186-95. PubMed ID: 21295136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changing paradigms in thiology from antioxidant defense toward redox regulation.
    Flohé L
    Methods Enzymol; 2010; 473():1-39. PubMed ID: 20513470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lymphocyte levels of redox-sensitive transcription factors and antioxidative enzymes as indicators of pro-oxidative state in depressive patients.
    Lukic I; Mitic M; Djordjevic J; Tatalovic N; Bozovic N; Soldatovic I; Mihaljevic M; Pavlovic Z; Radojcic MB; Maric NP; Adzic M
    Neuropsychobiology; 2014; 70(1):1-9. PubMed ID: 25170744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen peroxide sensing, signaling and regulation of transcription factors.
    Marinho HS; Real C; Cyrne L; Soares H; Antunes F
    Redox Biol; 2014; 2():535-62. PubMed ID: 24634836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative Stress.
    Sies H; Berndt C; Jones DP
    Annu Rev Biochem; 2017 Jun; 86():715-748. PubMed ID: 28441057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of thiol peroxidase mechanisms.
    Flohé L; Toppo S; Cozza G; Ursini F
    Antioxid Redox Signal; 2011 Aug; 15(3):763-80. PubMed ID: 20649470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. S-Alk(en)ylmercaptocysteine suppresses LPS-induced pro-inflammatory responses in murine macrophages through inhibition of NF-κB pathway and modulation of thiol redox status.
    Tocmo R; Parkin K
    Free Radic Biol Med; 2018 Dec; 129():548-558. PubMed ID: 30342185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross Talk in HEK293 Cells Between Nrf2, HIF, and NF-κB Activities upon Challenges with Redox Therapeutics Characterized with Single-Cell Resolution.
    Johansson K; Cebula M; Rengby O; Dreij K; Carlström KE; Sigmundsson K; Piehl F; Arnér ES
    Antioxid Redox Signal; 2017 Feb; 26(6):229-246. PubMed ID: 26415122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel shogaol analog suppresses cancer cell invasion and inflammation, and displays cytoprotective effects through modulation of NF-κB and Nrf2-Keap1 signaling pathways.
    Gan FF; Ling H; Ang X; Reddy SA; Lee SS; Yang H; Tan SH; Hayes JD; Chui WK; Chew EH
    Toxicol Appl Pharmacol; 2013 Nov; 272(3):852-62. PubMed ID: 23899529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells - up regulation of Nrf2 expression and down regulation of NF-κB and COX-2.
    Ramyaa P; Krishnaswamy R; Padma VV
    Biochim Biophys Acta; 2014 Jan; 1840(1):681-92. PubMed ID: 24161694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.
    Moldogazieva NT; Mokhosoev IM; Feldman NB; Lutsenko SV
    Free Radic Res; 2018 May; 52(5):507-543. PubMed ID: 29589770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (-)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia.
    Chiou YS; Huang Q; Ho CT; Wang YJ; Pan MH
    Free Radic Biol Med; 2016 May; 94():1-16. PubMed ID: 26878775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional dissection of Nrf2-dependent phase II genes in vascular inflammation and endotoxic injury using Keap1 siRNA.
    Kim JH; Choi YK; Lee KS; Cho DH; Baek YY; Lee DK; Ha KS; Choe J; Won MH; Jeoung D; Lee H; Kwon YG; Kim YM
    Free Radic Biol Med; 2012 Aug; 53(3):629-40. PubMed ID: 22609006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in vitro inflammation model to study the Nrf2 and NF-κB crosstalk in presence of ferulic acid as modulator.
    Lampiasi N; Montana G
    Immunobiology; 2018; 223(4-5):349-355. PubMed ID: 29096944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox activation of Nrf2 & NF-κB: a double end sword?
    Buelna-Chontal M; Zazueta C
    Cell Signal; 2013 Dec; 25(12):2548-57. PubMed ID: 23993959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NF-κB and Keap1 Interaction Represses Nrf2-Mediated Antioxidant Response in Rabbit Hemorrhagic Disease Virus Infection.
    Hu B; Wei H; Song Y; Chen M; Fan Z; Qiu R; Zhu W; Xu W; Wang F
    J Virol; 2020 May; 94(10):. PubMed ID: 32161178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals.
    Surh YJ; Kundu JK; Na HK
    Planta Med; 2008 Oct; 74(13):1526-39. PubMed ID: 18937164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S-allylmercaptocysteine ameliorates lipopolysaccharide-induced acute lung injury in mice by inhibiting inflammation and oxidative stress via nuclear factor kappa B and Keap1/Nrf2 pathways.
    Mo M; Li S; Dong Z; Li C; Sun Y; Li A; Zhao Z
    Int Immunopharmacol; 2020 Apr; 81():106273. PubMed ID: 32070920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.