These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 21194416)
1. Comparison of imputation methods for handling missing covariate data when fitting a Cox proportional hazards model: a resampling study. Marshall A; Altman DG; Holder RL BMC Med Res Methodol; 2010 Dec; 10():112. PubMed ID: 21194416 [TBL] [Abstract][Full Text] [Related]
2. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. Marshall A; Altman DG; Royston P; Holder RL BMC Med Res Methodol; 2010 Jan; 10():7. PubMed ID: 20085642 [TBL] [Abstract][Full Text] [Related]
3. Comparison of methods for handling missing data on immunohistochemical markers in survival analysis of breast cancer. Ali AM; Dawson SJ; Blows FM; Provenzano E; Ellis IO; Baglietto L; Huntsman D; Caldas C; Pharoah PD Br J Cancer; 2011 Feb; 104(4):693-9. PubMed ID: 21266980 [TBL] [Abstract][Full Text] [Related]
4. Does pattern mixture modelling reduce bias due to informative attrition compared to fitting a mixed effects model to the available cases or data imputed using multiple imputation?: a simulation study. Welch CA; Sabia S; Brunner E; Kivimäki M; Shipley MJ BMC Med Res Methodol; 2018 Aug; 18(1):89. PubMed ID: 30157752 [TBL] [Abstract][Full Text] [Related]
5. Multiple imputation using auxiliary imputation variables that only predict missingness can increase bias due to data missing not at random. Curnow E; Cornish RP; Heron JE; Carpenter JR; Tilling K BMC Med Res Methodol; 2024 Oct; 24(1):231. PubMed ID: 39375597 [TBL] [Abstract][Full Text] [Related]
6. Outcome-sensitive multiple imputation: a simulation study. Kontopantelis E; White IR; Sperrin M; Buchan I BMC Med Res Methodol; 2017 Jan; 17(1):2. PubMed ID: 28068910 [TBL] [Abstract][Full Text] [Related]
7. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study. De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA BMC Med Res Methodol; 2017 Jul; 17(1):114. PubMed ID: 28743256 [TBL] [Abstract][Full Text] [Related]
8. Cox regression analysis with missing covariates via nonparametric multiple imputation. Hsu CH; Yu M Stat Methods Med Res; 2019 Jun; 28(6):1676-1688. PubMed ID: 29717943 [TBL] [Abstract][Full Text] [Related]
9. How are missing data in covariates handled in observational time-to-event studies in oncology? A systematic review. Carroll OU; Morris TP; Keogh RH BMC Med Res Methodol; 2020 May; 20(1):134. PubMed ID: 32471366 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of multiple imputation approaches for handling missing covariate information in a case-cohort study with a binary outcome. Middleton M; Nguyen C; Moreno-Betancur M; Carlin JB; Lee KJ BMC Med Res Methodol; 2022 Apr; 22(1):87. PubMed ID: 35369860 [TBL] [Abstract][Full Text] [Related]
11. Imputation of missing values of tumour stage in population-based cancer registration. Eisemann N; Waldmann A; Katalinic A BMC Med Res Methodol; 2011 Sep; 11():129. PubMed ID: 21929796 [TBL] [Abstract][Full Text] [Related]
12. Imputation strategies for missing binary outcomes in cluster randomized trials. Ma J; Akhtar-Danesh N; Dolovich L; Thabane L; BMC Med Res Methodol; 2011 Feb; 11():18. PubMed ID: 21324148 [TBL] [Abstract][Full Text] [Related]
13. Multiple imputation in Cox regression when there are time-varying effects of covariates. Keogh RH; Morris TP Stat Med; 2018 Nov; 37(25):3661-3678. PubMed ID: 30014575 [TBL] [Abstract][Full Text] [Related]
14. Handling missing data in matched case-control studies using multiple imputation. Seaman SR; Keogh RH Biometrics; 2015 Dec; 71(4):1150-9. PubMed ID: 26237003 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Imputation Strategies for Incomplete Longitudinal Data in Life-Course Epidemiology. Shaw C; Wu Y; Zimmerman SC; Hayes-Larson E; Belin TR; Power MC; Glymour MM; Mayeda ER Am J Epidemiol; 2023 Nov; 192(12):2075-2084. PubMed ID: 37338987 [TBL] [Abstract][Full Text] [Related]
16. Estimating excess hazard ratios and net survival when covariate data are missing: strategies for multiple imputation. Falcaro M; Nur U; Rachet B; Carpenter JR Epidemiology; 2015 May; 26(3):421-8. PubMed ID: 25774607 [TBL] [Abstract][Full Text] [Related]
17. Comparing single and multiple imputation strategies for harmonizing substance use data across HIV-related cohort studies. Javanbakht M; Lin J; Ragsdale A; Kim S; Siminski S; Gorbach P BMC Med Res Methodol; 2022 Apr; 22(1):90. PubMed ID: 35369872 [TBL] [Abstract][Full Text] [Related]
18. Missing continuous outcomes under covariate dependent missingness in cluster randomised trials. Hossain A; Diaz-Ordaz K; Bartlett JW Stat Methods Med Res; 2017 Jun; 26(3):1543-1562. PubMed ID: 27177885 [TBL] [Abstract][Full Text] [Related]
19. Imputation of missing covariate in randomized controlled trials with a continuous outcome: Scoping review and new results. Kayembe MT; Jolani S; Tan FES; van Breukelen GJP Pharm Stat; 2020 Nov; 19(6):840-860. PubMed ID: 32510791 [TBL] [Abstract][Full Text] [Related]
20. Multi-metric comparison of machine learning imputation methods with application to breast cancer survival. El Badisy I; Graffeo N; Khalis M; Giorgi R BMC Med Res Methodol; 2024 Aug; 24(1):191. PubMed ID: 39215245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]