These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 21194539)

  • 1. A new quantitative PCR assay for the detection of hepatotoxigenic cyanobacteria.
    Al-Tebrineh J; Gehringer MM; Akcaalan R; Neilan BA
    Toxicon; 2011 Mar; 57(4):546-54. PubMed ID: 21194539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative real-time PCR detection of toxic Nodularia cyanobacteria in the Baltic Sea.
    Koskenniemi K; Lyra C; Rajaniemi-Wacklin P; Jokela J; Sivonen K
    Appl Environ Microbiol; 2007 Apr; 73(7):2173-9. PubMed ID: 17277219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria.
    Jungblut AD; Neilan BA
    Arch Microbiol; 2006 Mar; 185(2):107-14. PubMed ID: 16402223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of hepatotoxin-producing cyanobacteria by DNA-chip.
    Rantala A; Rizzi E; Castiglioni B; de Bellis G; Sivonen K
    Environ Microbiol; 2008 Mar; 10(3):653-64. PubMed ID: 18190512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular methods: chip assay and quantitative real-time PCR: in detecting hepatotoxic cyanobacteria.
    Rantala-Ylinen A; Sipari H; Sivonen K
    Methods Mol Biol; 2011; 739():73-86. PubMed ID: 21567319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging high throughput analyses of cyanobacterial toxins and toxic cyanobacteria.
    Sivonen K
    Adv Exp Med Biol; 2008; 619():539-57. PubMed ID: 18461783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic contributions to the risk assessment of microcystin in the environment.
    Dittmann E; Börner T
    Toxicol Appl Pharmacol; 2005 Mar; 203(3):192-200. PubMed ID: 15737674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular detection of genes responsible for cyanobacterial toxin production in the genera Microcystis, Nodularia, and Cylindrospermopsis.
    Burns BP; Saker ML; Moffitt MC; Neilan BA
    Methods Mol Biol; 2004; 268():213-22. PubMed ID: 15156033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of hepatotoxic Microcystis strains by PCR with intact cells from both culture and environmental samples.
    Pan H; Song L; Liu Y; Börner T
    Arch Microbiol; 2002 Dec; 178(6):421-7. PubMed ID: 12420161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative determination by screening ELISA and HPLC-MS/MS of microcystins LR, LY, LA, YR, RR, LF, LW, and nodularin in the water of Occhito lake and crops.
    Trifirò G; Barbaro E; Gambaro A; Vita V; Clausi MT; Franchino C; Palumbo MP; Floridi F; De Pace R
    Anal Bioanal Chem; 2016 Nov; 408(27):7699-7708. PubMed ID: 27544518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplex PCR for detection of microcystins-producing cyanobacteria from freshwater samples.
    Valério E; Chambel L; Paulino S; Faria N; Pereira P; Tenreiro R
    Environ Toxicol; 2010 Jun; 25(3):251-60. PubMed ID: 19489064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentially Toxic Planktic and Benthic Cyanobacteria in Slovenian Freshwater Bodies: Detection by Quantitative PCR.
    Zupančič M; Kogovšek P; Šter T; Remec Rekar Š; Cerasino L; Baebler Š; Krivograd Klemenčič A; Eleršek T
    Toxins (Basel); 2021 Feb; 13(2):. PubMed ID: 33670338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noncompetitive Chromogenic Lateral-Flow Immunoassay for Simultaneous Detection of Microcystins and Nodularin.
    Akter S; Kustila T; Leivo J; Muralitharan G; Vehniäinen M; Lamminmäki U
    Biosensors (Basel); 2019 Jun; 9(2):. PubMed ID: 31216673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and Quantification of Toxin-Producing
    Lee EH; Cho KS; Son A
    J Microbiol Biotechnol; 2017 Apr; 27(4):808-815. PubMed ID: 28119512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microcystins associated with Microcystis dominated blooms in the Southwest wetlands, Western Australia.
    Kemp A; John J
    Environ Toxicol; 2006 Apr; 21(2):125-30. PubMed ID: 16528687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the presence of peptide synthetase and polyketide synthase genes in the cyanobacterial genus Nodularia.
    Moffitt MC; Neilan BA
    FEMS Microbiol Lett; 2001 Mar; 196(2):207-14. PubMed ID: 11267781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative assessment of aerosolized cyanobacterial toxins at two New Zealand lakes.
    Wood SA; Dietrich DR
    J Environ Monit; 2011 Jun; 13(6):1617-24. PubMed ID: 21491044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Culture-independent evidence for the persistent presence and genetic diversity of microcystin-producing Anabaena (Cyanobacteria) in the Gulf of Finland.
    Fewer DP; Köykkä M; Halinen K; Jokela J; Lyra C; Sivonen K
    Environ Microbiol; 2009 Apr; 11(4):855-66. PubMed ID: 19128321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera.
    Hisbergues M; Christiansen G; Rouhiainen L; Sivonen K; Börner T
    Arch Microbiol; 2003 Dec; 180(6):402-10. PubMed ID: 14551674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods for determining microcystins (peptide hepatotoxins) and microcystin-producing cyanobacteria.
    Sangolkar LN; Maske SS; Chakrabarti T
    Water Res; 2006 Nov; 40(19):3485-96. PubMed ID: 17014889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.