These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 21194625)
1. Strategies for the covalent conjugation of a bifunctional chelating agent to albumin: synthesis and characterization of potential MRI contrast agents. Kundu A; Peterlik H; Krssak M; Bytzek AK; Pashkunova-Martic I; Arion VB; Helbich TH; Keppler BK J Inorg Biochem; 2011 Feb; 105(2):250-5. PubMed ID: 21194625 [TBL] [Abstract][Full Text] [Related]
2. Synthesis, characterization, and pharmacokinetic evaluation of a potential MRI contrast agent containing two paramagnetic centers with albumin binding affinity. Parac-Vogt TN; Kimpe K; Laurent S; Vander Elst L; Burtea C; Chen F; Muller RN; Ni Y; Verbruggen A; Binnemans K Chemistry; 2005 May; 11(10):3077-86. PubMed ID: 15776492 [TBL] [Abstract][Full Text] [Related]
3. Gd-complexes of macrocyclic DTPA conjugates of 1,1'-bis(amino)ferrocenes as high relaxivity MRI blood-pool contrast agents (BPCAs). Kim HK; Park JA; Kim KM; Nasiruzzaman SM; Kang DS; Lee J; Chang Y; Kim TJ Chem Commun (Camb); 2010 Nov; 46(44):8442-4. PubMed ID: 20886175 [TBL] [Abstract][Full Text] [Related]
4. Chelating DTPA amphiphiles: ion-tunable self-assembly structures and gadolinium complexes. Moghaddam MJ; de Campo L; Kirby N; Drummond CJ Phys Chem Chem Phys; 2012 Oct; 14(37):12854-62. PubMed ID: 22890045 [TBL] [Abstract][Full Text] [Related]
5. AAZTA-based bifunctional chelating agents for the synthesis of multimeric/dendrimeric MRI contrast agents. Gugliotta G; Botta M; Tei L Org Biomol Chem; 2010 Oct; 8(20):4569-74. PubMed ID: 20740241 [TBL] [Abstract][Full Text] [Related]
6. Fast and easy access to efficient bifunctional chelators for MRI applications. Gugliotta G; Botta M; Giovenzana GB; Tei L Bioorg Med Chem Lett; 2009 Jul; 19(13):3442-4. PubMed ID: 19477128 [TBL] [Abstract][Full Text] [Related]
7. PAMAM dendrimers conjugated with an uncharged gadolinium(III) chelate with a fast water exchange: the influence of chelate charge on rotational dynamics. Polásek M; Hermann P; Peters JA; Geraldes CF; Lukes I Bioconjug Chem; 2009 Nov; 20(11):2142-53. PubMed ID: 19883075 [TBL] [Abstract][Full Text] [Related]
8. High-relaxivity MRI contrast agents prepared from miniemulsion polymerization using gadolinium(III)-based metallosurfactants. Gong P; Chen Z; Chen Y; Wang W; Wang X; Hu A Chem Commun (Camb); 2011 Apr; 47(14):4240-2. PubMed ID: 21359276 [TBL] [Abstract][Full Text] [Related]
9. High-relaxivity MRI contrast agents: where coordination chemistry meets medical imaging. Werner EJ; Datta A; Jocher CJ; Raymond KN Angew Chem Int Ed Engl; 2008; 47(45):8568-80. PubMed ID: 18825758 [TBL] [Abstract][Full Text] [Related]
11. Lanthanide oleates: chelation, self-assembly, and exemplification of ordered nanostructured colloidal contrast agents for medical imaging. Liu G; Conn CE; Drummond CJ J Phys Chem B; 2009 Dec; 113(49):15949-59. PubMed ID: 19904961 [TBL] [Abstract][Full Text] [Related]
12. Brain tumor enhancement in magnetic resonance imaging at 3 tesla: intraindividual comparison of two high relaxivity macromolecular contrast media with a standard extracellular gd-chelate in a rat brain tumor model. Fries P; Runge VM; Bücker A; Schürholz H; Reith W; Robert P; Jackson C; Lanz T; Schneider G Invest Radiol; 2009 Apr; 44(4):200-6. PubMed ID: 19300099 [TBL] [Abstract][Full Text] [Related]
13. Investigation of non-covalent interactions between paramagnetic complexes and human serum albumin by electrospray mass spectrometry. Henrotte V; Laurent S; Gabelica V; Elst LV; Depauw E; Muller RN Rapid Commun Mass Spectrom; 2004; 18(17):1919-24. PubMed ID: 15329857 [TBL] [Abstract][Full Text] [Related]
14. Development of intravascular contrast agents for MRI using gadolinium chelates. Kittigowittana K; Yang CT; Cheah WC; Chuang KH; Tuang CY; Chang YT; Golay X; Bates RW ChemMedChem; 2011 May; 6(5):781-7. PubMed ID: 21433294 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of poly(L-glutamic acid) gadolinium chelate: a new biodegradable MRI contrast agent. Wen X; Jackson EF; Price RE; Kim EE; Wu Q; Wallace S; Charnsangavej C; Gelovani JG; Li C Bioconjug Chem; 2004; 15(6):1408-15. PubMed ID: 15546209 [TBL] [Abstract][Full Text] [Related]
16. A Gd3+-based magnetic resonance imaging contrast agent sensitive to beta-galactosidase activity utilizing a receptor-induced magnetization enhancement (RIME) phenomenon. Hanaoka K; Kikuchi K; Terai T; Komatsu T; Nagano T Chemistry; 2008; 14(3):987-95. PubMed ID: 17992679 [TBL] [Abstract][Full Text] [Related]
17. Relaxometric investigations and MRI evaluation of a liposome-loaded pH-responsive gadolinium(III) complex. Gianolio E; Porto S; Napolitano R; Baroni S; Giovenzana GB; Aime S Inorg Chem; 2012 Jul; 51(13):7210-7. PubMed ID: 22716284 [TBL] [Abstract][Full Text] [Related]
18. Gadolinium(III) 1,2-hydroxypyridonate-based complexes: toward MRI contrast agents of high relaxivity. Xu J; Churchill DG; Botta M; Raymond KN Inorg Chem; 2004 Sep; 43(18):5492-4. PubMed ID: 15332797 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and characterization of a new bioactivated paramagnetic gadolinium(III) complex [Gd(DOTA-FPG)(H2O)] for tracing gene expression. Chang YT; Cheng CM; Su YZ; Lee WT; Hsu JS; Liu GC; Cheng TL; Wang YM Bioconjug Chem; 2007; 18(6):1716-27. PubMed ID: 17935289 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and evaluation of a high relaxivity manganese(II)-based MRI contrast agent. Troughton JS; Greenfield MT; Greenwood JM; Dumas S; Wiethoff AJ; Wang J; Spiller M; McMurry TJ; Caravan P Inorg Chem; 2004 Oct; 43(20):6313-23. PubMed ID: 15446878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]