BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 21195066)

  • 1. Crystallographic evidence for active-site dynamics in the hydrolytic aldehyde dehydrogenases. Implications for the deacylation step of the catalyzed reaction.
    Muñoz-Clares RA; González-Segura L; Díaz-Sánchez AG
    Chem Biol Interact; 2011 May; 191(1-3):137-46. PubMed ID: 21195066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and biochemical investigations of the catalytic mechanism of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans.
    Cobessi D; Tête-Favier F; Marchal S; Branlant G; Aubry A
    J Mol Biol; 2000 Jun; 300(1):141-52. PubMed ID: 10864505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization and conformational isomerization of the cofactor during the catalysis in hydrolytic ALDHs.
    Talfournier F; Pailot A; Stinès-Chaumeil C; Branlant G
    Chem Biol Interact; 2009 Mar; 178(1-3):79-83. PubMed ID: 19028478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid residues that affect the basicity of the catalytic glutamate of the hydrolytic aldehyde dehydrogenases.
    Muñoz-Clares RA; González-Segura L; Riveros-Rosas H; Julián-Sánchez A
    Chem Biol Interact; 2015 Jun; 234():45-58. PubMed ID: 25617482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of the carboxyl terminal domain of rat 10-formyltetrahydrofolate dehydrogenase: implications for the catalytic mechanism of aldehyde dehydrogenases.
    Tsybovsky Y; Donato H; Krupenko NI; Davies C; Krupenko SA
    Biochemistry; 2007 Mar; 46(11):2917-29. PubMed ID: 17302434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of protection against irreversible oxidation of the catalytic cysteine of ALDH enzymes: Possible role of vicinal cysteines.
    Muñoz-Clares RA; González-Segura L; Murillo-Melo DS; Riveros-Rosas H
    Chem Biol Interact; 2017 Oct; 276():52-64. PubMed ID: 28216341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The first crystal structure of a thioacylenzyme intermediate in the ALDH family: new coenzyme conformation and relevance to catalysis.
    D'Ambrosio K; Pailot A; Talfournier F; Didierjean C; Benedetti E; Aubry A; Branlant G; Corbier C
    Biochemistry; 2006 Mar; 45(9):2978-86. PubMed ID: 16503652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and biochemical characterization of a novel aldehyde dehydrogenase encoded by the benzoate oxidation pathway in Burkholderia xenovorans LB400.
    Bains J; Boulanger MJ
    J Mol Biol; 2008 Jun; 379(3):597-608. PubMed ID: 18462753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coenzyme isomerization is integral to catalysis in aldehyde dehydrogenase.
    Perez-Miller SJ; Hurley TD
    Biochemistry; 2003 Jun; 42(23):7100-9. PubMed ID: 12795606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa Provides new insight into the reaction mechanism and shows a novel binding mode of the 2'-phosphate of NADP+ and a novel cation binding site.
    González-Segura L; Rudiño-Piñera E; Muñoz-Clares RA; Horjales E
    J Mol Biol; 2009 Jan; 385(2):542-57. PubMed ID: 19013472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling study on a hydrolytic mechanism of class A beta-lactamases.
    Ishiguro M; Imajo S
    J Med Chem; 1996 May; 39(11):2207-18. PubMed ID: 8667364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation.
    Meriläinen G; Poikela V; Kursula P; Wierenga RK
    Biochemistry; 2009 Nov; 48(46):11011-25. PubMed ID: 19842716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process.
    Ishida T; Kato S
    J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of aldehyde oxidation catalyzed by horse liver alcohol dehydrogenase.
    Olson LP; Luo J; Almarsson O; Bruice TC
    Biochemistry; 1996 Jul; 35(30):9782-91. PubMed ID: 8703951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical investigation of astacin proteolysis.
    Chen SL; Li ZS; Fang WH
    J Inorg Biochem; 2012 Jun; 111():70-9. PubMed ID: 22484502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate.
    Valiña AL; Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2004 Dec; 43(50):15657-72. PubMed ID: 15595822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus: a molecular mechanics and molecular dynamics study.
    da Graça Thrige D; Buur JR; Jørgensen FS
    Biopolymers; 1997 Sep; 42(3):319-36. PubMed ID: 9279125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active site dynamics of acyl-chymotrypsin.
    Nakagawa S; Yu HA; Karplus M; Umeyama H
    Proteins; 1993 Jun; 16(2):172-94. PubMed ID: 8332606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of the class D beta-lactamase OXA-13 in the native form and in complex with meropenem.
    Pernot L; Frénois F; Rybkine T; L'Hermite G; Petrella S; Delettré J; Jarlier V; Collatz E; Sougakoff W
    J Mol Biol; 2001 Jul; 310(4):859-74. PubMed ID: 11453693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical mechanism and substrate binding sites of NADP-dependent aldehyde dehydrogenase from Streptococcus mutans.
    Marchal S; Cobessi D; Rahuel-Clermont S; Tête-Favier F; Aubry A; Branlant G
    Chem Biol Interact; 2001 Jan; 130-132(1-3):15-28. PubMed ID: 11306027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.