BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 21195067)

  • 1. Spontaneous insertion of lipopolysaccharide into lipid membranes from aqueous solution.
    Alam JM; Yamazaki M
    Chem Phys Lipids; 2011 Feb; 164(2):166-74. PubMed ID: 21195067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape changes and vesicle fission of giant unilamellar vesicles of liquid-ordered phase membrane induced by lysophosphatidylcholine.
    Tanaka T; Sano R; Yamashita Y; Yamazaki M
    Langmuir; 2004 Oct; 20(22):9526-34. PubMed ID: 15491182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vesicle fission of giant unilamellar vesicles of liquid-ordered-phase membranes induced by amphiphiles with a single long hydrocarbon chain.
    Inaoka Y; Yamazaki M
    Langmuir; 2007 Jan; 23(2):720-8. PubMed ID: 17209626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The single-giant unilamellar vesicle method reveals lysenin-induced pore formation in lipid membranes containing sphingomyelin.
    Alam JM; Kobayashi T; Yamazaki M
    Biochemistry; 2012 Jun; 51(25):5160-72. PubMed ID: 22668506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface.
    Tamba Y; Yamazaki M
    J Phys Chem B; 2009 Apr; 113(14):4846-52. PubMed ID: 19267489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles.
    Sharmin S; Islam MZ; Karal MA; Alam Shibly SU; Dohra H; Yamazaki M
    Biochemistry; 2016 Aug; 55(30):4154-65. PubMed ID: 27420912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability.
    Tamba Y; Yamazaki M
    Biochemistry; 2005 Dec; 44(48):15823-33. PubMed ID: 16313185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroformation of giant unilamellar vesicles from native membranes and organic lipid mixtures for the study of lipid domains under physiological ionic-strength conditions.
    Montes LR; Ahyayauch H; Ibarguren M; Sot J; Alonso A; Bagatolli LA; Goñi FM
    Methods Mol Biol; 2010; 606():105-14. PubMed ID: 20013393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension.
    Peterlin P; Arrigler V; Kogej K; Svetina S; Walde P
    Chem Phys Lipids; 2009 Jun; 159(2):67-76. PubMed ID: 19477312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipopolysaccharide induces raft domain expansion in membrane composed of a phospholipid-cholesterol-sphingomyelin ternary system.
    Nomura K; Maeda M; Sugase K; Kusumoto S
    Innate Immun; 2011 Feb; 17(3):256-68. PubMed ID: 20418256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vesicle budding induced by a pore-forming peptide.
    Yu Y; Vroman JA; Bae SC; Granick S
    J Am Chem Soc; 2010 Jan; 132(1):195-201. PubMed ID: 20000420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A membrane filtering method for the purification of giant unilamellar vesicles.
    Tamba Y; Terashima H; Yamazaki M
    Chem Phys Lipids; 2011 Jul; 164(5):351-8. PubMed ID: 21524642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of giant unilamellar vesicles mimicking cell membranes induced by the pesticides glyphosate and picloram.
    Lemma T; Ruiz GCM; Oliveira ON; Constantino CJL
    Biophys Chem; 2019 Jul; 250():106176. PubMed ID: 31055199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis.
    Allende D; McIntosh TJ
    Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Native lysozyme and dry-heated lysozyme interactions with membrane lipid monolayers: lateral reorganization of LPS monolayer, model of the Escherichia coli outer membrane.
    Derde M; Nau F; Lechevalier V; Guérin-Dubiard C; Paboeuf G; Jan S; Baron F; Gautier M; Vié V
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):174-83. PubMed ID: 25450345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge and aggregation pattern govern the interaction of plasticins with LPS monolayers mimicking the external leaflet of the outer membrane of Gram-negative bacteria.
    Michel JP; Wang YX; Dé E; Fontaine P; Goldmann M; Rosilio V
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2967-79. PubMed ID: 26343162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic asymmetric bacterial membranes incorporating lipopolysaccharides.
    Stephan MS; Dunsing V; Pramanik S; Chiantia S; Barbirz S; Robinson T; Dimova R
    Biophys J; 2023 Jun; 122(11):2147-2161. PubMed ID: 36523159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model membrane platforms to study protein-membrane interactions.
    Sezgin E; Schwille P
    Mol Membr Biol; 2012 Aug; 29(5):144-54. PubMed ID: 22831167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pyrenebutyrate on the translocation of arginine-rich cell-penetrating peptides through artificial membranes: recruiting peptides to the membranes, dissipating liquid-ordered phases, and inducing curvature.
    Katayama S; Nakase I; Yano Y; Murayama T; Nakata Y; Matsuzaki K; Futaki S
    Biochim Biophys Acta; 2013 Sep; 1828(9):2134-42. PubMed ID: 23711826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of giant unilamellar vesicles and large unilamellar vesicles of liquid-ordered phase membranes in the presence of Triton X-100.
    Tamba Y; Tanaka T; Yahagi T; Yamashita Y; Yamazaki M
    Biochim Biophys Acta; 2004 Nov; 1667(1):1-6. PubMed ID: 15533300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.