These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 21195185)
1. Dimer structure and conformational variability in the N-terminal region of an archaeal small heat shock protein, StHsp14.0. Takeda K; Hayashi T; Abe T; Hirano Y; Hanazono Y; Yohda M; Miki K J Struct Biol; 2011 Apr; 174(1):92-9. PubMed ID: 21195185 [TBL] [Abstract][Full Text] [Related]
2. Structural studies on the oligomeric transition of a small heat shock protein, StHsp14.0. Hanazono Y; Takeda K; Yohda M; Miki K J Mol Biol; 2012 Sep; 422(1):100-8. PubMed ID: 22613762 [TBL] [Abstract][Full Text] [Related]
3. StHsp14.0, a small heat shock protein of Sulfolobus tokodaii strain 7, protects denatured proteins from aggregation in the partially dissociated conformation. Abe T; Oka T; Nakagome A; Tsukada Y; Yasunaga T; Yohda M J Biochem; 2011 Oct; 150(4):403-9. PubMed ID: 21659385 [TBL] [Abstract][Full Text] [Related]
4. Role of the IXI/V motif in oligomer assembly and function of StHsp14.0, a small heat shock protein from the acidothermophilic archaeon, Sulfolobus tokodaii strain 7. Saji H; Iizuka R; Yoshida T; Abe T; Kidokoro S; Ishii N; Yohda M Proteins; 2008 May; 71(2):771-82. PubMed ID: 17979194 [TBL] [Abstract][Full Text] [Related]
5. Crystal structures of Xanthomonas small heat shock protein provide a structural basis for an active molecular chaperone oligomer. Hilario E; Martin FJ; Bertolini MC; Fan L J Mol Biol; 2011 Apr; 408(1):74-86. PubMed ID: 21315085 [TBL] [Abstract][Full Text] [Related]
6. Regions outside the alpha-crystallin domain of the small heat shock protein Hsp26 are required for its dimerization. Chen J; Feige MJ; Franzmann TM; Bepperling A; Buchner J J Mol Biol; 2010 Apr; 398(1):122-31. PubMed ID: 20171228 [TBL] [Abstract][Full Text] [Related]
7. The essential role of the flexible termini in the temperature-responsiveness of the oligomeric state and chaperone-like activity for the polydisperse small heat shock protein IbpB from Escherichia coli. Jiao W; Qian M; Li P; Zhao L; Chang Z J Mol Biol; 2005 Apr; 347(4):871-84. PubMed ID: 15769476 [TBL] [Abstract][Full Text] [Related]
8. Role of the N-terminal region of the crenarchaeal sHsp, StHsp14.0, in thermal-induced disassembly of the complex and molecular chaperone activity. Usui K; Hatipoglu OF; Ishii N; Yohda M Biochem Biophys Res Commun; 2004 Feb; 315(1):113-8. PubMed ID: 15013433 [TBL] [Abstract][Full Text] [Related]
9. Active-State Structures of a Small Heat-Shock Protein Revealed a Molecular Switch for Chaperone Function. Liu L; Chen JY; Yang B; Wang FH; Wang YH; Yun CH Structure; 2015 Nov; 23(11):2066-75. PubMed ID: 26439766 [TBL] [Abstract][Full Text] [Related]
10. Biochemical and biophysical characterization of small heat shock proteins from sugarcane. Involvement of a specific region located at the N-terminus with substrate specificity. Tiroli AO; Ramos CH Int J Biochem Cell Biol; 2007; 39(4):818-31. PubMed ID: 17336576 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of the MarR family regulatory protein, ST1710, from Sulfolobus tokodaii strain 7. Kumarevel T; Tanaka T; Nishio M; Gopinath SC; Takio K; Shinkai A; Kumar PK; Yokoyama S J Struct Biol; 2008 Jan; 161(1):9-17. PubMed ID: 17933554 [TBL] [Abstract][Full Text] [Related]
12. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies. Pasta SY; Raman B; Ramakrishna T; Rao ChM Mol Vis; 2004 Sep; 10():655-62. PubMed ID: 15448619 [TBL] [Abstract][Full Text] [Related]
13. Molecular structure and dynamics of the dimeric human small heat shock protein HSPB6. Weeks SD; Baranova EV; Heirbaut M; Beelen S; Shkumatov AV; Gusev NB; Strelkov SV J Struct Biol; 2014 Mar; 185(3):342-54. PubMed ID: 24382496 [TBL] [Abstract][Full Text] [Related]
14. Crystallization and heavy-atom derivatization of StHsp14.0, a small heat-shock protein from Sulfolobus tokodaii. Hayashi T; Abe T; Takeda K; Akiyama N; Yohda M; Miki K Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Oct; 65(Pt 10):1007-10. PubMed ID: 19851008 [TBL] [Abstract][Full Text] [Related]
15. Structural dynamics of archaeal small heat shock proteins. Haslbeck M; Kastenmüller A; Buchner J; Weinkauf S; Braun N J Mol Biol; 2008 Apr; 378(2):362-74. PubMed ID: 18353362 [TBL] [Abstract][Full Text] [Related]
16. Structure, stability, and chaperone function of alphaA-crystallin: role of N-terminal region. Kundu M; Sen PC; Das KP Biopolymers; 2007 Jun; 86(3):177-92. PubMed ID: 17345631 [TBL] [Abstract][Full Text] [Related]
17. Engineering of a Polydisperse Small Heat-Shock Protein Reveals Conserved Motifs of Oligomer Plasticity. Mishra S; Chandler SA; Williams D; Claxton DP; Koteiche HA; Stewart PL; Benesch JLP; Mchaourab HS Structure; 2018 Aug; 26(8):1116-1126.e4. PubMed ID: 29983375 [TBL] [Abstract][Full Text] [Related]
18. The oligomeric plasticity of Hsp20 of Sulfolobus acidocaldarius protects environment-induced protein aggregation and membrane destabilization. Roy M; Gupta S; Patranabis S; Ghosh A Biochim Biophys Acta Biomembr; 2018 Dec; 1860(12):2549-2565. PubMed ID: 30293966 [TBL] [Abstract][Full Text] [Related]
19. Small heat shock protein AgsA forms dynamic fibrils. Shi X; Wang Z; Yan L; Ezemaduka AN; Fan G; Wang R; Fu X; Yin C; Chang Z FEBS Lett; 2011 Nov; 585(21):3396-402. PubMed ID: 22001209 [TBL] [Abstract][Full Text] [Related]
20. Glutamic acid residues in the C-terminal extension of small heat shock protein 25 are critical for structural and functional integrity. Morris AM; Treweek TM; Aquilina JA; Carver JA; Walker MJ FEBS J; 2008 Dec; 275(23):5885-98. PubMed ID: 19021764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]