These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 21195787)

  • 1. The in vitro effect of manuka honeys on growth and adherence of oral bacteria.
    Badet C; Quero F
    Anaerobe; 2011 Feb; 17(1):19-22. PubMed ID: 21195787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro anti-bacterial and anti-adherence effects of natural polyphenolic compounds on oral bacteria.
    Furiga A; Lonvaud-Funel A; Dorignac G; Badet C
    J Appl Microbiol; 2008 Nov; 105(5):1470-6. PubMed ID: 18795979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bactericidal activity of different honeys against pathogenic bacteria.
    Lusby PE; Coombes AL; Wilkinson JM
    Arch Med Res; 2005; 36(5):464-7. PubMed ID: 16099322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the antimicrobial decapeptide KSL on the growth of oral pathogens and Streptococcus mutans biofilm.
    Liu Y; Wang L; Zhou X; Hu S; Zhang S; Wu H
    Int J Antimicrob Agents; 2011 Jan; 37(1):33-8. PubMed ID: 20956070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand.
    Mavric E; Wittmann S; Barth G; Henle T
    Mol Nutr Food Res; 2008 Apr; 52(4):483-9. PubMed ID: 18210383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cecropin-XJ on growth and adherence of oral cariogenic bacteria in vitro.
    Hao YQ; Zhou XD; Xiao XR; Lu JJ; Zhang FC; Hu T; Wu HK; Chen XM
    Chin Med J (Engl); 2005 Jan; 118(2):155-60. PubMed ID: 15667802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of a novel antimicrobial peptide chrysophsin-1 on oral pathogens and Streptococcus mutans biofilms.
    Wang W; Tao R; Tong Z; Ding Y; Kuang R; Zhai S; Liu J; Ni L
    Peptides; 2012 Feb; 33(2):212-9. PubMed ID: 22281025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-biofilm effects of honey against wound pathogens Proteus mirabilis and Enterobacter cloacae.
    Majtan J; Bohova J; Horniackova M; Klaudiny J; Majtan V
    Phytother Res; 2014 Jan; 28(1):69-75. PubMed ID: 23494861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro inhibitory effects of Polygonum cuspidatum on bacterial viability and virulence factors of Streptococcus mutans and Streptococcus sobrinus.
    Song JH; Kim SK; Chang KW; Han SK; Yi HK; Jeon JG
    Arch Oral Biol; 2006 Dec; 51(12):1131-40. PubMed ID: 16914113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial activity of Greek and Cypriot honeys against Staphylococcus aureus and Pseudomonas aeruginosa in comparison to manuka honey.
    Anthimidou E; Mossialos D
    J Med Food; 2013 Jan; 16(1):42-7. PubMed ID: 23134461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel effect of plant lectins on the inhibition of Streptococcus mutans biofilm formation on saliva-coated surface.
    Islam B; Khan SN; Naeem A; Sharma V; Khan AU
    J Appl Microbiol; 2009 May; 106(5):1682-9. PubMed ID: 19226385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial activity of bacterial isolates from different floral sources of honey.
    Lee H; Churey JJ; Worobo RW
    Int J Food Microbiol; 2008 Aug; 126(1-2):240-4. PubMed ID: 18538876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manuka honey inhibits adhesion and invasion of medically important wound bacteria in vitro.
    Maddocks SE; Jenkins RE; Rowlands RS; Purdy KJ; Cooper RA
    Future Microbiol; 2013 Dec; 8(12):1523-36. PubMed ID: 24266353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins.
    Maddocks SE; Lopez MS; Rowlands RS; Cooper RA
    Microbiology (Reading); 2012 Mar; 158(Pt 3):781-790. PubMed ID: 22294681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MPC-polymer reduces adherence and biofilm formation by oral bacteria.
    Hirota K; Yumoto H; Miyamoto K; Yamamoto N; Murakami K; Hoshino Y; Matsuo T; Miyake Y
    J Dent Res; 2011 Jul; 90(7):900-5. PubMed ID: 21447697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibacterial potential of Manuka honey against three oral bacteria in vitro.
    Schmidlin PR; English H; Duncan W; Belibasakis GN; Thurnheer T
    Swiss Dent J; 2014; 124(9):922-4. PubMed ID: 25253413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Honeydew honey as a potent antibacterial agent in eradication of multi-drug resistant Stenotrophomonas maltophilia isolates from cancer patients.
    Majtan J; Majtanova L; Bohova J; Majtan V
    Phytother Res; 2011 Apr; 25(4):584-7. PubMed ID: 20882522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro activity of an engineered honey, medical-grade honeys, and antimicrobial wound dressings against biofilm-producing clinical bacterial isolates.
    Halstead FD; Webber MA; Rauf M; Burt R; Dryden M; Oppenheim BA
    J Wound Care; 2016 Feb; 25(2):93-4, 96-102. PubMed ID: 26878302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a spectrophotometric bioassay for determination of microbial sensitivity to manuka honey.
    Patton T; Barrett J; Brennan J; Moran N
    J Microbiol Methods; 2006 Jan; 64(1):84-95. PubMed ID: 15979745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibacterial activity of different honeys against pathogenic bacteria.
    Voidarou C; Alexopoulos A; Plessas S; Karapanou A; Mantzourani I; Stavropoulou E; Fotou K; Tzora A; Skoufos I; Bezirtzoglou E
    Anaerobe; 2011 Dec; 17(6):375-9. PubMed ID: 21524711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.