These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21196117)

  • 1. Enhancing denitrification using a carbon supplement generated from the wet oxidation of waste activated sludge.
    Strong PJ; McDonald B; Gapes DJ
    Bioresour Technol; 2011 May; 102(9):5533-40. PubMed ID: 21196117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wet oxidation of domestic sludge and process integration: the Mineralis process.
    Lendormi T; Prévot C; Doppenberg F; Spérandio M; Debellefontaine H
    Water Sci Technol; 2001; 44(10):163-9. PubMed ID: 11794648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon source recovery from waste activated sludge by alkaline hydrolysis and gamma-ray irradiation for biological denitrification.
    Kim TH; Nam YK; Park C; Lee M
    Bioresour Technol; 2009 Dec; 100(23):5694-9. PubMed ID: 19596570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Savings with upgraded performance through improved activated sludge denitrification in the combined activated sludge-biofilter system of the Southpest Wastewater Treatment Plant.
    Jobbágy A; Tardy GM; Palkó G; Benáková A; Krhutková O; Wanner J
    Water Sci Technol; 2008; 57(8):1287-93. PubMed ID: 18469403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of highly elevated nitrate from drinking water by pH-heterogenized heterotrophic denitrification facilitated with ferrous sulfide-based autotrophic denitrification.
    Huang B; Chi G; Chen X; Shi Y
    Bioresour Technol; 2011 Nov; 102(21):10154-7. PubMed ID: 21893412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of colloidal and particulate organic compounds in denitrification and EBPR occurring in a full-scale activated sludge system.
    Drewnowski J; Makinia J
    Water Sci Technol; 2011; 63(2):318-24. PubMed ID: 21252437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological denitrification of brines from membrane treatment processes using an upflow sludge blanket (USB) reactor.
    Beliavski M; Meerovich I; Tarre S; Green M
    Water Sci Technol; 2010; 61(4):911-7. PubMed ID: 20182069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen reduction in wastewater treatment using different anox-circulation flow rates and ethanol as a carbon source.
    Poutiainen H; Laitinen S; Pradhan S; Pessi M; Heinonen-Tanski H
    Environ Technol; 2010 May; 31(6):617-23. PubMed ID: 20540423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Denitrification of nitrate-contaminated groundwater using a simple immobilized activated sludge bioreactor.
    Ye Z; Wang F; Bi H; Wang Z; Liu GH
    Water Sci Technol; 2012; 66(3):517-24. PubMed ID: 22744681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ozonation reduces sludge production and improves denitrification.
    Dytczak MA; Londry KL; Siegrist H; Oleszkiewicz JA
    Water Res; 2007 Feb; 41(3):543-50. PubMed ID: 17188735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced nitrogen removal from sludge dewatering liquor by simultaneous primary sludge fermentation and nitrate reduction in batch and continuous reactors.
    Peng Y; Zhang L; Zhang S; Gan Y; Wu C
    Bioresour Technol; 2012 Jan; 104():144-9. PubMed ID: 22100236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Denitrification of high concentrations of nitrites and nitrates in synthetic medium with different sources of organic carbon. II. Ethanol.
    Mycielski R; Blaszczyk M; Jackowska A; Olkowska H
    Acta Microbiol Pol; 1983; 32(4):381-8. PubMed ID: 6202106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sludge hydrolysate as a carbon source for denitrification.
    Aravinthan V; Mino T; Takizawa S; Satoh H; Matsuo T
    Water Sci Technol; 2001; 43(1):191-9. PubMed ID: 11379091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design strategy for a simultaneous nitrification/denitrification of a slaughterhouse wastewater in a Sequencing Batch Reactor: ASM2d modeling and verification.
    Filali-Meknassi Y; Auriol M; Tyagi RD; Comeau Y; Surampalli RY
    Environ Technol; 2005 Oct; 26(10):1081-100. PubMed ID: 16342532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-anoxic denitrification driven by PHA and glycogen within enhanced biological phosphorus removal.
    Coats ER; Mockos A; Loge FJ
    Bioresour Technol; 2011 Jan; 102(2):1019-27. PubMed ID: 20970328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological nutrient removal in membrane bioreactors: denitrification and phosphorus removal kinetics.
    Parco V; du Toit G; Wentzel M; Ekama G
    Water Sci Technol; 2007; 56(6):125-34. PubMed ID: 17898451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological denitrification with a novel biodegradable polymer as carbon source and biofilm carrier.
    Wu W; Yang F; Yang L
    Bioresour Technol; 2012 Aug; 118():136-40. PubMed ID: 22705516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing denitrification kinetics at cold temperature using various carbon sources in lab-scale sequencing batch reactors.
    Mokhayeri Y; Riffat R; Takacs I; Dold P; Bott C; Hinojosa J; Bailey W; Murthy S
    Water Sci Technol; 2008; 58(1):233-8. PubMed ID: 18653959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excess cell mass as an internal carbon source for biological denitrification.
    Biradar PM; Roy SB; D'Souza SF; Pandit AB
    Bioresour Technol; 2010 Mar; 101(6):1787-91. PubMed ID: 19932955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.