These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21196577)

  • 1. Quantitative mapping of reversible mitochondrial Complex I cysteine oxidation in a Parkinson disease mouse model.
    Danielson SR; Held JM; Oo M; Riley R; Gibson BW; Andersen JK
    J Biol Chem; 2011 Mar; 286(9):7601-8. PubMed ID: 21196577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutathione depletion in a midbrain-derived immortalized dopaminergic cell line results in limited tyrosine nitration of mitochondrial complex I subunits: implications for Parkinson's disease.
    Bharath S; Andersen JK
    Antioxid Redox Signal; 2005; 7(7-8):900-10. PubMed ID: 15998245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid purification and mass spectrometric characterization of mitochondrial NADH dehydrogenase (Complex I) from rodent brain and a dopaminergic neuronal cell line.
    Schilling B; Bharath M M S; Row RH; Murray J; Cusack MP; Capaldi RA; Freed CR; Prasad KN; Andersen JK; Gibson BW
    Mol Cell Proteomics; 2005 Jan; 4(1):84-96. PubMed ID: 15591592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depletion of glutathione does not affect electron transport chain complex activity in brain mitochondria: Implications for Parkinson disease and postmortem studies.
    Heales SJ; Menzes A; Davey GP
    Free Radic Biol Med; 2011 Apr; 50(7):899-902. PubMed ID: 21145387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: implications for Parkinson's disease.
    Chinta SJ; Andersen JK
    Free Radic Biol Med; 2006 Nov; 41(9):1442-8. PubMed ID: 17023271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted quantitation of site-specific cysteine oxidation in endogenous proteins using a differential alkylation and multiple reaction monitoring mass spectrometry approach.
    Held JM; Danielson SR; Behring JB; Atsriku C; Britton DJ; Puckett RL; Schilling B; Campisi J; Benz CC; Gibson BW
    Mol Cell Proteomics; 2010 Jul; 9(7):1400-10. PubMed ID: 20233844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-specific S-glutathiolation of mitochondrial NADH ubiquinone reductase.
    Chen CL; Zhang L; Yeh A; Chen CA; Green-Church KB; Zweier JL; Chen YR
    Biochemistry; 2007 May; 46(19):5754-65. PubMed ID: 17444656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional modules and structural basis of conformational coupling in mitochondrial complex I.
    Hunte C; Zickermann V; Brandt U
    Science; 2010 Jul; 329(5990):448-51. PubMed ID: 20595580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.
    Paul R; Choudhury A; Kumar S; Giri A; Sandhir R; Borah A
    PLoS One; 2017; 12(2):e0171285. PubMed ID: 28170429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial Complex I Reversible S-Nitrosation Improves Bioenergetics and Is Protective in Parkinson's Disease.
    Milanese C; Tapias V; Gabriels S; Cerri S; Levandis G; Blandini F; Tresini M; Shiva S; Greenamyre JT; Gladwin MT; Mastroberardino PG
    Antioxid Redox Signal; 2018 Jan; 28(1):44-61. PubMed ID: 28816057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A disruption in iron-sulfur center biogenesis via inhibition of mitochondrial dithiol glutaredoxin 2 may contribute to mitochondrial and cellular iron dysregulation in mammalian glutathione-depleted dopaminergic cells: implications for Parkinson's disease.
    Lee DW; Kaur D; Chinta SJ; Rajagopalan S; Andersen JK
    Antioxid Redox Signal; 2009 Sep; 11(9):2083-94. PubMed ID: 19290777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical Role of Flavin and Glutathione in Complex I-Mediated Bioenergetic Failure in Brain Ischemia/Reperfusion Injury.
    Kahl A; Stepanova A; Konrad C; Anderson C; Manfredi G; Zhou P; Iadecola C; Galkin A
    Stroke; 2018 May; 49(5):1223-1231. PubMed ID: 29643256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass Spectrometry-Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling.
    Giese J; Eirich J; Post F; Schwarzländer M; Finkemeier I
    Methods Mol Biol; 2022; 2363():215-234. PubMed ID: 34545496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson's disease.
    Merad-Boudia M; Nicole A; Santiard-Baron D; Saillé C; Ceballos-Picot I
    Biochem Pharmacol; 1998 Sep; 56(5):645-55. PubMed ID: 9783733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial complex I in the post-ischemic heart: reperfusion-mediated oxidative injury and protein cysteine sulfonation.
    Kang PT; Chen CL; Lin P; Zhang L; Zweier JL; Chen YR
    J Mol Cell Cardiol; 2018 Aug; 121():190-204. PubMed ID: 30031815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of iron-sulfur clusters in respiratory complex I.
    Hinchliffe P; Sazanov LA
    Science; 2005 Jul; 309(5735):771-4. PubMed ID: 16051796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite: implications for Parkinson's disease.
    Hsu M; Srinivas B; Kumar J; Subramanian R; Andersen J
    J Neurochem; 2005 Mar; 92(5):1091-103. PubMed ID: 15715660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox equivalents and mitochondrial bioenergetics.
    Roede JR; Go YM; Jones DP
    Methods Mol Biol; 2012; 810():249-80. PubMed ID: 22057573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying Functional Cysteine Residues in the Mitochondria.
    Bak DW; Pizzagalli MD; Weerapana E
    ACS Chem Biol; 2017 Apr; 12(4):947-957. PubMed ID: 28157297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.