These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21196577)

  • 21. Glutathione in Parkinson's disease: a link between oxidative stress and mitochondrial damage?
    Di Monte DA; Chan P; Sandy MS
    Ann Neurol; 1992; 32 Suppl():S111-5. PubMed ID: 1510368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons.
    Liss B; Haeckel O; Wildmann J; Miki T; Seino S; Roeper J
    Nat Neurosci; 2005 Dec; 8(12):1742-51. PubMed ID: 16299504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein thiyl radical mediates S-glutathionylation of complex I.
    Kang PT; Zhang L; Chen CL; Chen J; Green KB; Chen YR
    Free Radic Biol Med; 2012 Aug; 53(4):962-73. PubMed ID: 22634394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identifying Redox-Sensitive Cysteine Residues in Mitochondria.
    Kisty EA; Saart EC; Weerapana E
    Antioxidants (Basel); 2023 Apr; 12(5):. PubMed ID: 37237858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols.
    Brown GC; Borutaite V
    Biochim Biophys Acta; 2004 Jul; 1658(1-2):44-9. PubMed ID: 15282173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.
    Yao C; Behring JB; Shao D; Sverdlov AL; Whelan SA; Elezaby A; Yin X; Siwik DA; Seta F; Costello CE; Cohen RA; Matsui R; Colucci WS; McComb ME; Bachschmid MM
    PLoS One; 2015; 10(12):e0144025. PubMed ID: 26642319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kainate-induced mitochondrial oxidative stress contributes to hippocampal degeneration in senescence-accelerated mice.
    Shin EJ; Jeong JH; Bing G; Park ES; Chae JS; Yen TP; Kim WK; Wie MB; Jung BD; Kim HJ; Lee SY; Kim HC
    Cell Signal; 2008 Apr; 20(4):645-58. PubMed ID: 18248956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled.
    Keeney PM; Xie J; Capaldi RA; Bennett JP
    J Neurosci; 2006 May; 26(19):5256-64. PubMed ID: 16687518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain.
    Kaur P; Radotra B; Minz RW; Gill KD
    Neurotoxicology; 2007 Nov; 28(6):1208-19. PubMed ID: 17850875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of the conserved cysteine residues of the 11.5 kDa subunit in complex I catalytic properties.
    Marques I; Ushakova AV; Duarte M; Videira A
    J Biochem; 2007 Apr; 141(4):489-93. PubMed ID: 17261544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glutathione depletion in PC12 results in selective inhibition of mitochondrial complex I activity. Implications for Parkinson's disease.
    Jha N; Jurma O; Lalli G; Liu Y; Pettus EH; Greenamyre JT; Liu RM; Forman HJ; Andersen JK
    J Biol Chem; 2000 Aug; 275(34):26096-101. PubMed ID: 10846169
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Induction of reversible cysteine-targeted protein oxidation by an endogenous electrophile 15-deoxy-delta12,14-prostaglandin J2.
    Ishii T; Uchida K
    Chem Res Toxicol; 2004 Oct; 17(10):1313-22. PubMed ID: 15487891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complex I syndrome in striatum and frontal cortex in a rat model of Parkinson disease.
    Valdez LB; Zaobornyj T; Bandez MJ; López-Cepero JM; Boveris A; Navarro A
    Free Radic Biol Med; 2019 May; 135():274-282. PubMed ID: 30862545
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cryo-EM structure of respiratory complex I reveals a link to mitochondrial sulfur metabolism.
    D'Imprima E; Mills DJ; Parey K; Brandt U; Kühlbrandt W; Zickermann V; Vonck J
    Biochim Biophys Acta; 2016 Dec; 1857(12):1935-1942. PubMed ID: 27693469
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative metabolites of 5-S-cysteinylnorepinephrine are irreversible inhibitors of mitochondrial complex I and the alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase complexes: possible implications for neurodegenerative brain disorders.
    Xin W; Shen XM; Li H; Dryhurst G
    Chem Res Toxicol; 2000 Aug; 13(8):749-60. PubMed ID: 10956063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cysteine Network (CYSTEINET) Dysregulation in Parkinson's Disease: Role of N-acetylcysteine.
    Martínez-Banaclocha M
    Curr Drug Metab; 2016; 17(4):368-85. PubMed ID: 26651975
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct regulation of complex I by mitochondrial MEF2D is disrupted in a mouse model of Parkinson disease and in human patients.
    She H; Yang Q; Shepherd K; Smith Y; Miller G; Testa C; Mao Z
    J Clin Invest; 2011 Mar; 121(3):930-40. PubMed ID: 21393861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction and analysis of redox-sensitive cysteines using machine learning and statistical methods.
    Keßler M; Wittig I; Ackermann J; Koch I
    Biol Chem; 2021 Jul; 402(8):925-935. PubMed ID: 34261205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial redox regulation and myocardial ischemia-reperfusion injury.
    Chen CL; Zhang L; Jin Z; Kasumov T; Chen YR
    Am J Physiol Cell Physiol; 2022 Jan; 322(1):C12-C23. PubMed ID: 34757853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry.
    García-Santamarina S; Boronat S; Domènech A; Ayté J; Molina H; Hidalgo E
    Nat Protoc; 2014 May; 9(5):1131-45. PubMed ID: 24743420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.