These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 21197033)
41. A comprehensive study for the plasmonic thin-film solar cell with periodic structure. Sha WE; Choy WC; Chew WC Opt Express; 2010 Mar; 18(6):5993-6007. PubMed ID: 20389619 [TBL] [Abstract][Full Text] [Related]
42. High efficiency thin-film crystalline Si/Ge tandem solar cell. Sun G; Chang F; Soref RA Opt Express; 2010 Feb; 18(4):3746-53. PubMed ID: 20389384 [TBL] [Abstract][Full Text] [Related]
43. Transmission of surface plasmon polaritons through a nanowire array: mechano-optical modulation and motion sensing. Fedyanin DY; Arsenin AV Opt Express; 2010 Sep; 18(19):20115-24. PubMed ID: 20940902 [TBL] [Abstract][Full Text] [Related]
44. Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells. Agrawal M; Peumans P Opt Express; 2008 Apr; 16(8):5385-96. PubMed ID: 18542641 [TBL] [Abstract][Full Text] [Related]
45. Using radiative transfer equation to model absorption by thin Cu(In,Ga)Se2 solar cells with Lambertian back reflector. Dahan N; Jehl Z; Guillemoles JF; Lincot D; Naghavi N; Greffet JJ Opt Express; 2013 Feb; 21(3):2563-80. PubMed ID: 23481714 [TBL] [Abstract][Full Text] [Related]
46. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Akimov YA; Koh WS; Ostrikov K Opt Express; 2009 Jun; 17(12):10195-205. PubMed ID: 19506674 [TBL] [Abstract][Full Text] [Related]
47. Absorption of light in a single vertical nanowire and a nanowire array. Anttu N Nanotechnology; 2019 Mar; 30(10):104004. PubMed ID: 30572314 [TBL] [Abstract][Full Text] [Related]
48. Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. Lee SH; Jung Y; Agarwal R Nat Nanotechnol; 2007 Oct; 2(10):626-30. PubMed ID: 18654387 [TBL] [Abstract][Full Text] [Related]
49. A generalized "cut and projection" algorithm for the generation of quasiperiodic plasmonic concentrators for high efficiency ultra-thin film photovoltaics. Flanigan PW; Ostfeld AE; Serrino NG; Ye Z; Pacifici D Opt Express; 2013 Feb; 21(3):2757-76. PubMed ID: 23481733 [TBL] [Abstract][Full Text] [Related]
50. Enhanced photon absorption and carrier generation in nanowire solar cells. Wang W; Wu S; Knize RJ; Reinhardt K; Lu Y; Chen S Opt Express; 2012 Feb; 20(4):3733-43. PubMed ID: 22418131 [TBL] [Abstract][Full Text] [Related]
51. Photocurrent generation in nanostructured organic solar cells. Yang F; Forrest SR ACS Nano; 2008 May; 2(5):1022-32. PubMed ID: 19206500 [TBL] [Abstract][Full Text] [Related]
52. Role of spectral non-idealities in the design of solar thermophotovoltaics. Lenert A; Nam Y; Bierman DM; Wang EN Opt Express; 2014 Oct; 22 Suppl 6():A1604-18. PubMed ID: 25607318 [TBL] [Abstract][Full Text] [Related]
53. Optical absorption characteristics of nanometer and submicron a-Si:H solar cells with two kinds of nano textures. Ziang X; Wei W; Laixiang Q; Wanjin X; Qin GG Opt Express; 2013 Jul; 21(15):18043-52. PubMed ID: 23938675 [TBL] [Abstract][Full Text] [Related]
54. Simulation and optimization of 1-D periodic dielectric nanostructures for light-trapping. Wang P; Menon R Opt Express; 2012 Jan; 20(2):1849-55. PubMed ID: 22274529 [TBL] [Abstract][Full Text] [Related]
56. Enhanced photon absorption of single nanowire α-Si solar cells modulated by silver core. Zhan Y; Zhao J; Zhou C; Alemayehu M; Li Y; Li Y Opt Express; 2012 May; 20(10):11506-16. PubMed ID: 22565770 [TBL] [Abstract][Full Text] [Related]
57. Simulation and analysis of prismatic bioinspired compound lenses for solar cells. Chiadini F; Fiumara V; Scaglione A; Lakhtakia A Bioinspir Biomim; 2010 Jun; 5(2):026002. PubMed ID: 20479523 [TBL] [Abstract][Full Text] [Related]
58. Critical interfaces in organic solar cells and their influence on the open-circuit voltage. Potscavage WJ; Sharma A; Kippelen B Acc Chem Res; 2009 Nov; 42(11):1758-67. PubMed ID: 19708653 [TBL] [Abstract][Full Text] [Related]
59. The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer. Lee JY; Peumans P Opt Express; 2010 May; 18(10):10078-87. PubMed ID: 20588861 [TBL] [Abstract][Full Text] [Related]
60. Light trapping cavity enhanced light transmission through a single sub-wavelength aperture in a metal film. Olkkonen J Opt Express; 2009 Dec; 17(26):23992-4001. PubMed ID: 20052110 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]