These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 211972)

  • 1. On the significance of electron transport systems for growth of Rhodospirillum rubrum.
    Oelze J; Fakoussa RM; Hudewentz J
    Arch Microbiol; 1978 Jul; 118(1):127-32. PubMed ID: 211972
    [No Abstract]   [Full Text] [Related]  

  • 2. Separation of respiratory reactions in Rhodospirillum rubrum: inhibition studies with 2-hydroxydiphenyl.
    Oelze J; Kamen MD
    Biochim Biophys Acta; 1975 Apr; 387(1):1-11. PubMed ID: 164937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of glucocorticoid hormones on NADH and succinate oxidation by rat brain and liver mitochondria].
    Vol'skiĭ GG; Zoidze SD; Smirnova MV
    Nerv Sist; 1986; 25():88-97. PubMed ID: 3020460
    [No Abstract]   [Full Text] [Related]  

  • 4. Electron and proton transport in Rhodospirillum rubrum chromatophores.
    Kakuno T; Hosoi K; Higuti T; Horio T
    J Biochem; 1973 Dec; 74(6):1193-203. PubMed ID: 4360811
    [No Abstract]   [Full Text] [Related]  

  • 5. Immunochemical studies on function of NADH: hemeprotein oxidoreductase in electron transport system of chromatophores from Rhodospirillum rubrum.
    Nisimoto Y; Yamashita J; Horio T
    J Biochem; 1973 Mar; 73(3):515-21. PubMed ID: 4146749
    [No Abstract]   [Full Text] [Related]  

  • 6. The effect of transfer from low to high light intensity on electron transport in Rhodospirillum rubrum membranes.
    Irschik H; Oelze J
    Arch Microbiol; 1976 Sep; 109(3):307-13. PubMed ID: 185976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. THE PHOTO-OXIDATION OF SUCCINATE BY CHROMATOPHORES OF RHODOSPIRILLUM RUBRUM.
    EVANS MC
    Biochem J; 1965 Jun; 95(3):661-8. PubMed ID: 14342500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of photophosphorylation coupling factor in energy conversion by depleted chromatophores of Rhodospirillum rubrum.
    Gromet-Elhanan Z
    J Biol Chem; 1974 Apr; 249(8):2522-7. PubMed ID: 4362685
    [No Abstract]   [Full Text] [Related]  

  • 9. [Quantitative determination of some respiratory enzymes in the placenta during physiological pregnancy (author's transl)].
    Dóka V; Kellerová E; Greksák M
    Cesk Gynekol; 1977 Feb; 42(1):34-7. PubMed ID: 191201
    [No Abstract]   [Full Text] [Related]  

  • 10. On the binding of mammalian cytochrome c in NADH- and succinate-cytochrome c-reductase from Rhodospirillum rubrum.
    Boll M
    Arch Mikrobiol; 1969; 67(2):141-6. PubMed ID: 4318272
    [No Abstract]   [Full Text] [Related]  

  • 11. delta pH driven energy-linked NAD+ reduction in Rhodospirillum rubrum chromatophores.
    Nore BF
    Arch Biochem Biophys; 1989 Oct; 274(1):285-9. PubMed ID: 2505679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunological studies on function of NADH: quinone oxidoreductase in electron transport system of chromatophores from Rhodospirillum rubrum.
    Nisimoto Y; Yamashita J; Horio T
    J Biochem; 1973 Mar; 73(3):523-8. PubMed ID: 4146750
    [No Abstract]   [Full Text] [Related]  

  • 13. Regulation of cyclic photophosphorylation in Rhodospirillum rubrum by the redox state of nicotinamide-adenine dinucleotide.
    Gimenez-Gallego G; Ramirez-Ponce MP; Ramirez JM
    Biochim Biophys Acta; 1979 Aug; 547(2):211-7. PubMed ID: 223636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.
    Riobó NA; Clementi E; Melani M; Boveris A; Cadenas E; Moncada S; Poderoso JJ
    Biochem J; 2001 Oct; 359(Pt 1):139-45. PubMed ID: 11563977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of electron transport and photophosphorylation systems of Rhodopseudomonas capsulata and Rhodospirillum rubrum. Effects of antimycin A and dibromothymoquinone.
    Gromet-Elhanan Z; Gest H
    Arch Microbiol; 1978 Jan; 116(1):29-34. PubMed ID: 414685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei.
    Beattie DS; Obungu VH; Kiaira JK
    Mol Biochem Parasitol; 1994 Mar; 64(1):87-94. PubMed ID: 8078526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of electron donors and acceptors on light-induced absorbance changes and photophosphorylation in Rhodospirillum rubrum chromatophores.
    Silberstein BR; Epel BL; Malkin S; Gromet-Elhanan Z
    Eur J Biochem; 1977 Oct; 80(1):135-41. PubMed ID: 411652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two different NADH dehydrogenases in respiration of Rhodospirillum rubrum chromatophores.
    Nisimoto Y; Kakuno T; Yamashita J; Horio T
    J Biochem; 1973 Dec; 74(6):1205-16. PubMed ID: 4149985
    [No Abstract]   [Full Text] [Related]  

  • 19. Mitochondrial electron-transport inhibitors.
    Singer TP
    Methods Enzymol; 1979; 55():454-62. PubMed ID: 223000
    [No Abstract]   [Full Text] [Related]  

  • 20. Light-dependent ATP formation in a non-phototrophic mutant of Rhodospirillum rubrum deficient in oxygen photoreduction.
    dell Valle-Tascón S; Giménez-Gallego G; Ramírez JM
    Biochem Biophys Res Commun; 1975 Sep; 66(2):514-9. PubMed ID: 810144
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.