These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 211972)

  • 21. [Noncyclic electron transport and membrane potential generation in the chromatophores of Rhodospirillum rubrum].
    Remennikov VG; Samuilov VD
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1979; (5):45-52. PubMed ID: 110361
    [No Abstract]   [Full Text] [Related]  

  • 22. Role of cytochrome b5 in NADPH-and NADH-dependent hydroxylation by the reconstituted cytochrome P-450- or P-448-containing system.
    Lu AY; Levin W; West SB; Vore M; Ryan D; Kuntzman R; Conney AH
    Adv Exp Med Biol; 1975; 58(00):447-66. PubMed ID: 239545
    [No Abstract]   [Full Text] [Related]  

  • 23. [Action of the antibiotic xanthothricin on Ehrlich ascites tumor cells].
    Akimenko VK; Golovchenko NP; Terent'eva TG
    Antibiotiki; 1974 Dec; 19(12):1101-4. PubMed ID: 4155606
    [No Abstract]   [Full Text] [Related]  

  • 24. The photoreduction of nicotinamide-adenine dinucleotide by chromatophore fractions from Rhodospirillum rubrum.
    Govindjee R; Sybesma C
    Biophys J; 1972 Jul; 12(7):897-908. PubMed ID: 4338746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox potentiometry in mitochondrial and photosynthetic bioenergetics.
    Dutton PL; Wilson DF
    Biochim Biophys Acta; 1974 Oct; 346(2):165-212. PubMed ID: 4154105
    [No Abstract]   [Full Text] [Related]  

  • 26. Saturation kinetics of coenzyme Q in NADH and succinate oxidation in beef heart mitochondria.
    Estornell E; Fato R; Castelluccio C; Cavazzoni M; Parenti Castelli G; Lenaz G
    FEBS Lett; 1992 Oct; 311(2):107-9. PubMed ID: 1327877
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reverse electron transport effects on NADH formation and metmyoglobin reduction.
    Belskie KM; Van Buiten CB; Ramanathan R; Mancini RA
    Meat Sci; 2015 Jul; 105():89-92. PubMed ID: 25828162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibitory effect of lysolecithin on electron transfer from NADH to cytochrome b.
    Honjo I; Takasan H; Ozawa K; Kitamura O; Sakai A
    J Biochem; 1968 Jun; 63(6):811-3. PubMed ID: 4304739
    [No Abstract]   [Full Text] [Related]  

  • 29. The adjustment of photosynthetically grown cells of Rhodospirillum rubrum to aerobic light conditions.
    Oelze J; Weaver P
    Arch Mikrobiol; 1971; 79(2):108-21. PubMed ID: 4331367
    [No Abstract]   [Full Text] [Related]  

  • 30. Role of ubiquinone-10 in electron transport system of chromatophores from Rhodospirillum rubrum.
    Higuti T; Erabi T; Kakuno T; Horio T
    J Biochem; 1975 Jul; 78(1):51-6. PubMed ID: 172493
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of succinate in the respiratory chain of Trypanosoma brucei procyclic trypomastigotes.
    Turrens JF
    Biochem J; 1989 Apr; 259(2):363-8. PubMed ID: 2719653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immobilized mitochondrial electron transport particle for NADH determination.
    Aizawa M; Wada M; Kato S; Suzuki S
    Biotechnol Bioeng; 1980 Sep; 22(9):1769-83. PubMed ID: 7407338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of 2-hydroxybiphenyl on membranes of Rhodospirillum rubrum.
    Maudinas B; Oelze J; Villoutreix J; Reisinger O
    Arch Mikrobiol; 1973 Nov; 93(3):219-28. PubMed ID: 4130016
    [No Abstract]   [Full Text] [Related]  

  • 34. Structure of the mitochondrial electron transport system.
    Hatefi Y; Hanstein WG; Davis KA; You KS
    Ann N Y Acad Sci; 1974 Feb; 227():504-20. PubMed ID: 4151263
    [No Abstract]   [Full Text] [Related]  

  • 35. Aminoethylcysteine ketimine decarboxylated dimer inhibits mitochondrial respiration by impairing electron transport at complex I level.
    Pecci L; Montefoschi G; Fontana M; Cavallini D
    Biochem Biophys Res Commun; 1994 Mar; 199(2):755-60. PubMed ID: 8135820
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the relationship of the energy-linked transhydrogenase to energy-linked NAD+ reduction in Rhodospirillum rubrum.
    Thomas JO; Fisher RR; Guillory RJ
    Biochim Biophys Acta; 1970 Nov; 223(1):204-6. PubMed ID: 4320756
    [No Abstract]   [Full Text] [Related]  

  • 37. Polarographic studies in presence of Triton X-100 on oxidation-reduction components bound with chromatophores from Rhodospirillum rubrum.
    Erabi T; Higuti T; Sakata K; Kakuno T; Yamashita J; Tanaka M; Horio T
    J Biochem; 1976 Mar; 79(3):497-503. PubMed ID: 181368
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemistry of gingival oxidative metabolism: a review.
    Fine AS; Person P
    J Oral Pathol; 1984 Jun; 13(3):191-212. PubMed ID: 6330331
    [No Abstract]   [Full Text] [Related]  

  • 39. Mode of antibacterial action of totarol, a diterpene from Podocarpus nagi.
    Haraguchi H; Oike S; Muroi H; Kubo I
    Planta Med; 1996 Apr; 62(2):122-5. PubMed ID: 8657742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ion transport and oxidative metabolism. 3. Interaction of the sulfonamides with some non-heme iron flavoproteins of the respiratory chain.
    François C
    Arch Int Physiol Biochim; 1972 Oct; 80(4):799-806. PubMed ID: 4120132
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.