These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21197342)

  • 1. Age- and sex-related regional compressive strength characteristics of human lumbar vertebrae in osteoporosis.
    Kurutz M; Donáth J; Gálos M; Varga P; Fornet B
    J Multidiscip Healthc; 2008 Dec; 1():105-21. PubMed ID: 21197342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Failure strength of human vertebrae: prediction using bone mineral density measured by DXA and bone volume by micro-CT.
    Perilli E; Briggs AM; Kantor S; Codrington J; Wark JD; Parkinson IH; Fazzalari NL
    Bone; 2012 Jun; 50(6):1416-25. PubMed ID: 22430313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimated risk score for spine fracture in the specific bending activity of normal Taiwanese men and women.
    Yang RS; Lin HJ; Chieng PU; Liu TK; Tsai KS
    Spine (Phila Pa 1976); 2005 Oct; 30(20):2288-92. PubMed ID: 16227891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ex vivo estimation of thoracolumbar vertebral body compressive strength: the relative contributions of bone densitometry and vertebral morphometry.
    Edmondston SJ; Singer KP; Day RE; Price RI; Breidahl PD
    Osteoporos Int; 1997; 7(2):142-8. PubMed ID: 9166395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rat osteoporotic spine model for the evaluation of bioresorbable bone cements.
    Wang ML; Massie J; Perry A; Garfin SR; Kim CW
    Spine J; 2007; 7(4):466-74. PubMed ID: 17630145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of vertebral strength in vitro by spinal bone densitometry and calcaneal ultrasound.
    Cheng XG; Nicholson PH; Boonen S; Lowet G; Brys P; Aerssens J; Van der Perre G; Dequeker J
    J Bone Miner Res; 1997 Oct; 12(10):1721-8. PubMed ID: 9333134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between structural parameters, bone mineral density and fracture load in lumbar vertebrae, based on high-resolution computed tomography, quantitative computed tomography and compression tests.
    Haidekker MA; Andresen R; Werner HJ
    Osteoporos Int; 1999; 9(5):433-40. PubMed ID: 10550463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of Young's modulus at various sampling points in a human lumbar spine vertebral body.
    Ogurkowska MB; Błaszczyk A
    Spine J; 2020 Nov; 20(11):1861-1875. PubMed ID: 32592901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yield point in prediction of compressive behavior of lumbar vertebral body by dual-energy x-ray absorptiometry.
    Renau A; Farrerons J; Yoldi B; Gil J; Proubasta I; Llauger J; Oliván JG; Planell J
    J Clin Densitom; 2004; 7(4):382-9. PubMed ID: 15618598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on the structural properties of the lumbar endplate: histological structure, the effect of bone density, and spinal level.
    Hou Y; Luo Z
    Spine (Phila Pa 1976); 2009 May; 34(12):E427-33. PubMed ID: 19454994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of vertebral strength topography with 3-dimensional computed tomographic structure.
    Noshchenko A; Plaseied A; Patel VV; Burger E; Baldini T; Yun L
    Spine (Phila Pa 1976); 2013 Feb; 38(4):339-49. PubMed ID: 22869060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influences of disc degeneration and bone mineral density on the structural properties of lumbar end plates.
    Hou Y; Yuan W
    Spine J; 2012 Mar; 12(3):249-56. PubMed ID: 22366078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The monotonic and fatigue properties of osteoporotic thoracic vertebral bodies.
    Lindsey DP; Kim MJ; Hannibal M; Alamin TF
    Spine (Phila Pa 1976); 2005 Mar; 30(6):645-9. PubMed ID: 15770179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TBS in early postmenopausal women with severe vertebral osteoporosis.
    Pouillès JM; Gosset A; Breteau A; Trémollieres FA
    Bone; 2021 Jan; 142():115698. PubMed ID: 33091641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA.
    Moro M; Hecker AT; Bouxsein ML; Myers ER
    Calcif Tissue Int; 1995 Mar; 56(3):206-9. PubMed ID: 7750025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional bone mineral density differences measured by quantitative computed tomography: does the standard clinically used L1-L2 average correlate with the entire lumbosacral spine?
    Salzmann SN; Shirahata T; Yang J; Miller CO; Carlson BB; Rentenberger C; Carrino JA; Shue J; Sama AA; Cammisa FP; Girardi FP; Hughes AP
    Spine J; 2019 Apr; 19(4):695-702. PubMed ID: 30343044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age- and gender-related differences in vertebral bone mass, density, and strength.
    Ebbesen EN; Thomsen JS; Beck-Nielsen H; Nepper-Rasmussen HJ; Mosekilde L
    J Bone Miner Res; 1999 Aug; 14(8):1394-403. PubMed ID: 10457272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biomechanical basis of vertebral body fragility in men and women.
    Duan Y; Seeman E; Turner CH
    J Bone Miner Res; 2001 Dec; 16(12):2276-83. PubMed ID: 11760842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced spinal bone mineral density in adolescents of an Ultra-Orthodox Jewish community in Brooklyn.
    Taha W; Chin D; Silverberg AI; Lashiker L; Khateeb N; Anhalt H
    Pediatrics; 2001 May; 107(5):E79. PubMed ID: 11331729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The trabecular effect: A population-based longitudinal study on age and sex differences in bone mineral density and vertebral load bearing capacity.
    Oppenheimer-Velez ML; Giambini H; Rezaei A; Camp JJ; Khosla S; Lu L
    Clin Biomech (Bristol, Avon); 2018 Jun; 55():73-78. PubMed ID: 29698852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.