These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 211975)

  • 41. A unique global metabolic trait of
    Dhamale T; Saha BK; Papade SE; Singh S; Phale PS
    Microbiology (Reading); 2022 Aug; 168(8):. PubMed ID: 35925665
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Catabolism of D-glucose by Pseudomonas putida U occurs via extracellular transformation into D-gluconic acid and induction of a specific gluconate transport system.
    Schleissner C; Reglero A; Luengo JM
    Microbiology (Reading); 1997 May; 143 ( Pt 5)():1595-1603. PubMed ID: 9168611
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prediction of growth of Pseudomonas fluorescens in milk during storage under fluctuating temperature.
    Lin H; Shavezipur M; Yousef A; Maleky F
    J Dairy Sci; 2016 Mar; 99(3):1822-1830. PubMed ID: 26723126
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Further studies on the degradation of folic acid in a growing culture of Pseudomonas fluorescens UK-1.
    Soini J; Majasaari K
    Acta Chem Scand; 1973 Oct; 27(10):3611-5. PubMed ID: 4131561
    [No Abstract]   [Full Text] [Related]  

  • 45. Malate and glucose in milk incubated with psychrotrophic bacteria.
    Matias P; Jaspe A; SanJose C
    Int J Food Microbiol; 1994 Oct; 23(2):215-9. PubMed ID: 7848783
    [TBL] [Abstract][Full Text] [Related]  

  • 46. New insights into Pseudomonas fluorescens alginate biosynthesis relevant for the establishment of an efficient production process for microbial alginates.
    Maleki S; Mærk M; Hrudikova R; Valla S; Ertesvåg H
    N Biotechnol; 2017 Jul; 37(Pt A):2-8. PubMed ID: 27593394
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Automated micromethod for the determination of the utilization of carbon sources by clinically significant Pseudomonas species].
    Kämpfer P; Bette W; Dott W
    Zentralbl Bakteriol Mikrobiol Hyg A; 1987 Jun; 265(1-2):62-73. PubMed ID: 3118596
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffii. I. Physiological studies and mutant analysis.
    Baumann P; Baumann L
    Arch Microbiol; 1975 Nov; 105(3):225-40. PubMed ID: 127561
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sulphur utilization during growth of pseudomonas fluorescens on potassium D-glucose 6-O-sulphate.
    Fitzgerald JW; Dodgson KS
    Biochem J; 1971 Feb; 121(3):521-8. PubMed ID: 5119788
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Water relations of solute accumulation in Pseudomonas fluorescens.
    Prior BA; Kenyon CP; van der Veen M; Mildenhall JP
    J Appl Bacteriol; 1987 Feb; 62(2):119-28. PubMed ID: 2883169
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Independent regulation of hexose catabolizing enzymes and glucose transport activity in Pseudomonas aeruginosa.
    Hylemon PB; Phibbs PV
    Biochem Biophys Res Commun; 1972 Sep; 48(5):1041-8. PubMed ID: 4626609
    [No Abstract]   [Full Text] [Related]  

  • 52. Sequential utilization of substrates by Pseudomonas putida CSV86: signatures of intermediate metabolites and online measurements.
    Basu A; Das D; Bapat P; Wangikar PP; Phale PS
    Microbiol Res; 2009; 164(4):429-37. PubMed ID: 17467253
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced production of ATP-binding cassette protein exporter-dependent lipase by modifying the growth medium components of Pseudomonas fluorescens.
    Eom GT; Song JK
    Biotechnol Lett; 2014 Aug; 36(8):1687-92. PubMed ID: 24737082
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Activation, by various aldoses, of dichlorophenol-indophenol reduction by endogenous constituents of a preparation of glucose dehydrogenase from Pseudomonas fluorescens].
    Wurtz B
    C R Seances Soc Biol Fil; 1979; 173(4):753-7. PubMed ID: 160821
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The uptake of glucose and gluconate by Pseudomonas putida.
    Vicente M; Pedro MA; Torrontegui G; Cánovas JL
    Mol Cell Biochem; 1975 Apr; 7(1):59-64. PubMed ID: 1134500
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway.
    Zamboni N; Fischer E; Laudert D; Aymerich S; Hohmann HP; Sauer U
    J Bacteriol; 2004 Jul; 186(14):4528-34. PubMed ID: 15231785
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pseudomonas cepacia mutants blocked in the direct oxidative pathway of glucose degradation.
    Lessie TG; Berka T; Zamanigian S
    J Bacteriol; 1979 Jul; 139(1):323-5. PubMed ID: 457605
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The specificity of oxidase and kinase preparations from Pseudomonas fluorescens towards deoxyfluoromonosaccharides.
    Taylor NF; Hill L; Eisenthal R
    Can J Biochem; 1975 Jan; 53(1):57-64. PubMed ID: 164267
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans.
    Rauch B; Pahlke J; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):711-8. PubMed ID: 20676631
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetic studies of gluconate pathway enzymes from Schizosaccharomyces pombe.
    Tsai CS; Shi JL; Ye HG
    Arch Biochem Biophys; 1995 Jan; 316(1):163-8. PubMed ID: 7840612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.