These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 21197578)
1. Rapid cold-hardening blocks cold-induced apoptosis by inhibiting the activation of pro-caspases in the flesh fly Sarcophaga crassipalpis. Yi SX; Lee RE Apoptosis; 2011 Mar; 16(3):249-55. PubMed ID: 21197578 [TBL] [Abstract][Full Text] [Related]
2. Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis. Yi SX; Moore CW; Lee RE Apoptosis; 2007 Jul; 12(7):1183-93. PubMed ID: 17245639 [TBL] [Abstract][Full Text] [Related]
3. In vivo and in vitro rapid cold-hardening protects cells from cold-shock injury in the flesh fly. Yi SX; Lee RE J Comp Physiol B; 2004 Nov; 174(8):611-5. PubMed ID: 15503055 [TBL] [Abstract][Full Text] [Related]
4. Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. Lee RE; Damodaran K; Yi SX; Lorigan GA Cryobiology; 2006 Jun; 52(3):459-63. PubMed ID: 16626678 [TBL] [Abstract][Full Text] [Related]
5. Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly. Teets NM; Peyton JT; Ragland GJ; Colinet H; Renault D; Hahn DA; Denlinger DL Physiol Genomics; 2012 Aug; 44(15):764-77. PubMed ID: 22735925 [TBL] [Abstract][Full Text] [Related]
6. p38 MAPK is a likely component of the signal transduction pathway triggering rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Fujiwara Y; Denlinger DL J Exp Biol; 2007 Sep; 210(Pt 18):3295-300. PubMed ID: 17766307 [TBL] [Abstract][Full Text] [Related]
7. Rapid cold hardening elicits changes in brain protein profiles of the flesh fly, Sarcophaga crassipalpis. Li A; Denlinger DL Insect Mol Biol; 2008 Sep; 17(5):565-72. PubMed ID: 18828842 [TBL] [Abstract][Full Text] [Related]
8. Desiccation enhances rapid cold-hardening in the flesh fly Sarcophaga bullata: evidence for cross tolerance between rapid physiological responses. Yi SX; Gantz JD; Lee RE J Comp Physiol B; 2017 Jan; 187(1):79-86. PubMed ID: 27568301 [TBL] [Abstract][Full Text] [Related]
9. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. Lee RE; Elnitsky MA; Rinehart JP; Hayward SA; Sandro LH; Denlinger DL J Exp Biol; 2006 Feb; 209(Pt 3):399-406. PubMed ID: 16424090 [TBL] [Abstract][Full Text] [Related]
10. In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. Tu S; McStay GP; Boucher LM; Mak T; Beere HM; Green DR Nat Cell Biol; 2006 Jan; 8(1):72-7. PubMed ID: 16362053 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of caspase activity in retinal cell apoptosis induced by various stimuli in vitro. Tezel G; Wax MB Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2660-7. PubMed ID: 10509663 [TBL] [Abstract][Full Text] [Related]
12. Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. Overgaard J; Sørensen JG; Petersen SO; Loeschcke V; Holmstrup M J Insect Physiol; 2005 Nov; 51(11):1173-82. PubMed ID: 16112133 [TBL] [Abstract][Full Text] [Related]
13. Antimycin A-induced killing of HL-60 cells: apoptosis initiated from within mitochondria does not necessarily proceed via caspase 9. King MA Cytometry A; 2005 Feb; 63(2):69-76. PubMed ID: 15655802 [TBL] [Abstract][Full Text] [Related]
14. Is rapid cold-hardening an aerobic process? Characterization of changes in metabolic activity during its induction and effects of anoxia in flesh fly. Kawarasaki Y; Welle AM; Elnitsky MA J Insect Physiol; 2020 Jan; 120():103996. PubMed ID: 31837292 [TBL] [Abstract][Full Text] [Related]
15. Thermotolerance induced at a mild temperature of 40 degrees C protects cells against heat shock-induced apoptosis. Bettaieb A; Averill-Bates DA J Cell Physiol; 2005 Oct; 205(1):47-57. PubMed ID: 15887240 [TBL] [Abstract][Full Text] [Related]
16. PAK2 is cleaved and activated during hyperosmotic shock-induced apoptosis via a caspase-dependent mechanism: evidence for the involvement of oxidative stress. Chan WH; Yu JS; Yang SD J Cell Physiol; 1999 Mar; 178(3):397-408. PubMed ID: 9989786 [TBL] [Abstract][Full Text] [Related]
17. Teratogen-induced activation of the mitochondrial apoptotic pathway in the yolk sac of day 9 mouse embryos. Soleman D; Cornel L; Little SA; Mirkes PE Birth Defects Res A Clin Mol Teratol; 2003 Feb; 67(2):98-107. PubMed ID: 12769505 [TBL] [Abstract][Full Text] [Related]
18. Enamel matrix derivative protects human gingival fibroblasts from TNF-induced apoptosis by inhibiting caspase activation. Zeldich E; Koren R; Dard M; Nemcovsky C; Weinreb M J Cell Physiol; 2007 Dec; 213(3):750-8. PubMed ID: 17607712 [TBL] [Abstract][Full Text] [Related]
19. Proteolysis of heat shock transcription factor is associated with apoptosis in rat Nb2 lymphoma cells. Zhang M; Blake MJ; Gout PW; Buckley DJ; Buckley AR Cell Growth Differ; 1999 Nov; 10(11):759-67. PubMed ID: 10593652 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of interleukin-1beta converting enzyme family proteases (caspases) reduces cold injury-induced brain trauma and DNA fragmentation in mice. Morita-Fujimura Y; Fujimura M; Kawase M; Murakami K; Kim GW; Chan PH J Cereb Blood Flow Metab; 1999 Jun; 19(6):634-42. PubMed ID: 10366193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]