BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21197657)

  • 1. Layers of epistasis: genome-wide regulatory networks and network approaches to genome-wide association studies.
    Cowper-Sal lari R; Cole MD; Karagas MR; Lupien M; Moore JH
    Wiley Interdiscip Rev Syst Biol Med; 2011; 3(5):513-26. PubMed ID: 21197657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene-set association and epistatic analyses reveal complex gene interaction networks affecting flowering time in a worldwide barley collection.
    He T; Hill CB; Angessa TT; Zhang XQ; Chen K; Moody D; Telfer P; Westcott S; Li C
    J Exp Bot; 2019 Oct; 70(20):5603-5616. PubMed ID: 31504706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revisiting genome-wide association studies from statistical modelling to machine learning.
    Sun S; Dong B; Zou Q
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33126243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selecting Closely-Linked SNPs Based on Local Epistatic Effects for Haplotype Construction Improves Power of Association Mapping.
    Liu F; Schmidt RH; Reif JC; Jiang Y
    G3 (Bethesda); 2019 Dec; 9(12):4115-4126. PubMed ID: 31604824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Gene Regulatory Interactions Using Natural Genetic Variation.
    John M; Grimm D; Korte A
    Methods Mol Biol; 2023; 2698():301-322. PubMed ID: 37682482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full genetic analysis for genome-wide association study of Fangji: a powerful approach for effectively dissecting the molecular architecture of personalized traditional Chinese medicine.
    Chen G; Xue WD; Zhu J
    Acta Pharmacol Sin; 2018 Jun; 39(6):906-911. PubMed ID: 29417942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical and Functional Studies Identify Epistasis of Cardiovascular Risk Genomic Variants From Genome-Wide Association Studies.
    Li Y; Cho H; Wang F; Canela-Xandri O; Luo C; Rawlik K; Archacki S; Xu C; Tenesa A; Chen Q; Wang QK
    J Am Heart Assoc; 2020 Apr; 9(7):e014146. PubMed ID: 32237974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post genome-wide association analysis: dissecting computational pathway/network-based approaches.
    Chimusa ER; Dalvie S; Dandara C; Wonkam A; Mazandu GK
    Brief Bioinform; 2019 Mar; 20(2):690-700. PubMed ID: 29701762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Integration of Epistasis Network and Functional Interactions in a GWAS Implicates RXR Pathway Genes in the Immune Response to Smallpox Vaccine.
    McKinney BA; Lareau C; Oberg AL; Kennedy RB; Ovsyannikova IG; Poland GA
    PLoS One; 2016; 11(8):e0158016. PubMed ID: 27513748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.
    Carmelo VAO; Kogelman LJA; Madsen MB; Kadarmideen HN
    BMC Bioinformatics; 2018 Jul; 19(1):277. PubMed ID: 30064383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting genetic interactions in pathway-based genome-wide association studies.
    Huang A; Martin ER; Vance JM; Cai X
    Genet Epidemiol; 2014 May; 38(4):300-9. PubMed ID: 24719383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using biological knowledge to uncover the mystery in the search for epistasis in genome-wide association studies.
    Ritchie MD
    Ann Hum Genet; 2011 Jan; 75(1):172-82. PubMed ID: 21158748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A network-based kernel machine test for the identification of risk pathways in genome-wide association studies.
    Freytag S; Manitz J; Schlather M; Kneib T; Amos CI; Risch A; Chang-Claude J; Heinrich J; Bickeböller H
    Hum Hered; 2013; 76(2):64-75. PubMed ID: 24434848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are Interactions between cis-Regulatory Variants Evidence for Biological Epistasis or Statistical Artifacts?
    Fish AE; Capra JA; Bush WS
    Am J Hum Genet; 2016 Oct; 99(4):817-830. PubMed ID: 27640306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide genetic interaction analysis of glaucoma using expert knowledge derived from human phenotype networks.
    Hu T; Darabos C; Cricco ME; Kong E; Moore JH
    Pac Symp Biocomput; 2015; 20():207-18. PubMed ID: 25592582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Wide Association Analyses in the Model Rhizobium
    Epstein B; Abou-Shanab RAI; Shamseldin A; Taylor MR; Guhlin J; Burghardt LT; Nelson M; Sadowsky MJ; Tiffin P
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30355664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prioritizing tests of epistasis through hierarchical representation of genomic redundancies.
    Cowman T; Koyutürk M
    Nucleic Acids Res; 2017 Aug; 45(14):e131. PubMed ID: 28605458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel methods for epistasis detection in genome-wide association studies.
    Slim L; Chatelain C; Azencott CA; Vert JP
    PLoS One; 2020; 15(11):e0242927. PubMed ID: 33253293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.
    Wu M; Zeng W; Liu W; Lv H; Chen T; Jiang R
    Methods; 2018 Aug; 145():41-50. PubMed ID: 29874547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pinpointing miRNA and genes enrichment over trait-relevant tissue network in Genome-Wide Association Studies.
    Li B; Dong J; Yu J; Fan Y; Shang L; Zhou X; Bai Y
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):191. PubMed ID: 33371893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.