BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21197841)

  • 1. Application of activated charcoal in the downstream processing of bacterial olefinic poly(3-hydroxyalkanoates).
    Wampfler B; Ramsauer T; Kehl K; Zinn M; Thöny-Meyer L
    Chimia (Aarau); 2010; 64(11):784-8. PubMed ID: 21197841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and purification of medium chain length poly(3-hydroxyalkanoates) (mcl-PHA) for medical applications using nonchlorinated solvents.
    Wampfler B; Ramsauer T; Rezzonico S; Hischier R; Köhling R; Thöny-Meyer L; Zinn M
    Biomacromolecules; 2010 Oct; 11(10):2716-23. PubMed ID: 20843062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous biosynthesis of two copolymers in Pseudomonas putida GPo1 using a two-stage continuous culture system.
    Hartmann R; Hany R; Witholt B; Zinn M
    Biomacromolecules; 2010 Jun; 11(6):1488-93. PubMed ID: 20459087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetone extraction of mcl-PHA from Pseudomonas putida KT2440.
    Jiang X; Ramsay JA; Ramsay BA
    J Microbiol Methods; 2006 Nov; 67(2):212-9. PubMed ID: 16753235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed-loop control of bacterial high-cell-density fed-batch cultures: production of mcl-PHAs by Pseudomonas putida KT2442 under single-substrate and cofeeding conditions.
    Kellerhals MB; Kessler B; Witholt B
    Biotechnol Bioeng; 1999 Nov; 65(3):306-15. PubMed ID: 10486129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale production of poly(3-hydroxyoctanoic acid) by Pseudomonas putida GPo1 and a simplified downstream process.
    Elbahloul Y; Steinbüchel A
    Appl Environ Microbiol; 2009 Feb; 75(3):643-51. PubMed ID: 19047387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential scanning calorimetric study of poly(3-hydroxyoctanoate) inclusions in bacterial cells.
    Song JJ; Yoon SC; Yu SM; Lenz RW
    Int J Biol Macromol; 1998 Oct; 23(3):165-73. PubMed ID: 9777703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient recovery of low endotoxin medium-chain-length poly([R]-3-hydroxyalkanoate) from bacterial biomass.
    Furrer P; Panke S; Zinn M
    J Microbiol Methods; 2007 Apr; 69(1):206-13. PubMed ID: 17316850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial synthesis of poly(beta-hydroxyalkanoates) bearing phenyl groups from pseudomonas putida: chemical structure and characterization.
    Abraham GA; Gallardo A; San Roman J; Olivera ER; Jodra R; García B; Miñambres B; García JL; Luengo JM
    Biomacromolecules; 2001; 2(2):562-7. PubMed ID: 11749221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyhydroxyalkanoate copolymers from forest biomass.
    Keenan TM; Nakas JP; Tanenbaum SW
    J Ind Microbiol Biotechnol; 2006 Jul; 33(7):616-26. PubMed ID: 16761168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440.
    Sun Z; Ramsay JA; Guay M; Ramsay BA
    Appl Microbiol Biotechnol; 2007 Feb; 74(1):69-77. PubMed ID: 17063330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting metagenomic diversity for novel polyhydroxyalkanoate synthases: production of a terpolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate) with a recombinant Pseudomonas putida strain.
    Cheema S; Bassas-Galia M; Sarma PM; Lal B; Arias S
    Bioresour Technol; 2012 Jan; 103(1):322-8. PubMed ID: 22071242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 2D-DIGE-based proteomic analysis brings new insights into cellular responses of Pseudomonas putida KT2440 during polyhydroxyalkanoates synthesis.
    Możejko-Ciesielska J; Mostek A
    Microb Cell Fact; 2019 May; 18(1):93. PubMed ID: 31138236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder.
    van der Walle GA; Buisman GJ; Weusthuis RA; Eggink G
    Int J Biol Macromol; 1999; 25(1-3):123-8. PubMed ID: 10416658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fed-batch production of poly-3-hydroxydecanoate from decanoic acid.
    Gao J; Ramsay JA; Ramsay BA
    J Biotechnol; 2016 Jan; 218():102-7. PubMed ID: 26689481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusual poly(3-hydroxyalkanoate) (PHA) biosynthesis behavior of Pseudomonas putida Bet001 and Delftia tsuruhatensis Bet002 isolated from palm oil mill effluent.
    Razaif-Mazinah MRM; Anis SNS; Harun HI; Rashid KA; Annuar MSM
    Biotechnol Appl Biochem; 2017 Mar; 64(2):259-269. PubMed ID: 26800648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cometabolic biosynthesis of copolyesters consisting of 3-hydroxyvalerate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. DSY-82.
    Kang HO; Chung CW; Kim HW; Kim YB; Rhee YH
    Antonie Van Leeuwenhoek; 2001 Oct; 80(2):185-91. PubMed ID: 11759051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast procedure for the analysis of poly(hydroxyalkanoates) in bacterial cells by off-line pyrolysis/gas-chromatography with flame ionization detector.
    Torri C; Cordiani H; Samorì C; Favaro L; Fabbri D
    J Chromatogr A; 2014 Sep; 1359():230-6. PubMed ID: 25069742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of medium-chain-length hydroxyalkanoic acids from Pseudomonas putida in pH stat.
    Wang L; Armbruster W; Jendrossek D
    Appl Microbiol Biotechnol; 2007 Jul; 75(5):1047-53. PubMed ID: 17401563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phasin PhaF controls bacterial shape and size in a network-forming strain of Pseudomonas putida.
    Obeso JI; Gómez-Botrán JL; Olivera ER; Luengo JM
    J Biotechnol; 2015 Apr; 199():17-20. PubMed ID: 25661838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.