These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 21197970)
1. Sampling rare events in nonequilibrium and nonstationary systems. Berryman JT; Schilling T J Chem Phys; 2010 Dec; 133(24):244101. PubMed ID: 21197970 [TBL] [Abstract][Full Text] [Related]
2. Homogeneous nucleation under shear in a two-dimensional Ising model: cluster growth, coalescence, and breakup. Allen RJ; Valeriani C; Tănase-Nicola S; ten Wolde PR; Frenkel D J Chem Phys; 2008 Oct; 129(13):134704. PubMed ID: 19045113 [TBL] [Abstract][Full Text] [Related]
3. Computation of nucleation at a nonequilibrium first-order phase transition using a rare-event algorithm. Adams DA; Ziff RM; Sander LM J Chem Phys; 2010 Nov; 133(17):174107. PubMed ID: 21054006 [TBL] [Abstract][Full Text] [Related]
4. Nonequilibrium umbrella sampling in spaces of many order parameters. Dickson A; Warmflash A; Dinner AR J Chem Phys; 2009 Feb; 130(7):074104. PubMed ID: 19239281 [TBL] [Abstract][Full Text] [Related]
5. Simulating rare events in equilibrium or nonequilibrium stochastic systems. Allen RJ; Frenkel D; ten Wolde PR J Chem Phys; 2006 Jan; 124(2):024102. PubMed ID: 16422566 [TBL] [Abstract][Full Text] [Related]
6. Computing stationary distributions in equilibrium and nonequilibrium systems with forward flux sampling. Valeriani C; Allen RJ; Morelli MJ; Frenkel D; Rein ten Wolde P J Chem Phys; 2007 Sep; 127(11):114109. PubMed ID: 17887830 [TBL] [Abstract][Full Text] [Related]
7. The barrier method: a technique for calculating very long transition times. Adams DA; Sander LM; Ziff RM J Chem Phys; 2010 Sep; 133(12):124103. PubMed ID: 20886920 [TBL] [Abstract][Full Text] [Related]
8. An idealized model for nonequilibrium dynamics in molecular systems. Vogt M; Hernandez R J Chem Phys; 2005 Oct; 123(14):144109. PubMed ID: 16238376 [TBL] [Abstract][Full Text] [Related]
9. Nonequilibrium characterization of spinodal points using short time dynamics. Loscar ES; Ferrero EE; Grigera TS; Cannas SA J Chem Phys; 2009 Jul; 131(2):024120. PubMed ID: 19603983 [TBL] [Abstract][Full Text] [Related]
10. Cluster kinetics and dynamics during spinodal decomposition. Yang J; McCoy BJ; Madras G J Chem Phys; 2006 Jan; 124(2):024713. PubMed ID: 16422632 [TBL] [Abstract][Full Text] [Related]
12. Nonequilibrium molecular dynamics simulation study on the orientation transition in the amphiphilic lamellar phase under shear flow. Guo H J Chem Phys; 2006 Dec; 125(21):214902. PubMed ID: 17166044 [TBL] [Abstract][Full Text] [Related]
13. Low-temperature nucleation in a kinetic Ising model under different stochastic dynamics with local energy barriers. Buendia GM; Rikvold PA; Park K; Novotny MA J Chem Phys; 2004 Sep; 121(9):4193-202. PubMed ID: 15332967 [TBL] [Abstract][Full Text] [Related]
14. Flow-Dependent Unfolding and Refolding of an RNA by Nonequilibrium Umbrella Sampling. Dickson A; Maienschein-Cline M; Tovo-Dwyer A; Hammond JR; Dinner AR J Chem Theory Comput; 2011 Sep; 7(9):2710-20. PubMed ID: 26605464 [TBL] [Abstract][Full Text] [Related]
15. Rosenbluth-sampled nonequilibrium work method for calculation of free energies in molecular simulation. Wu D; Kofke DA J Chem Phys; 2005 May; 122(20):204104. PubMed ID: 15945710 [TBL] [Abstract][Full Text] [Related]
16. Unbiased computation of transition times by pathway recombination. Kuipers J; Barkema GT J Chem Phys; 2008 May; 128(17):174108. PubMed ID: 18465911 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of the shear-induced isotropic-to-lamellar transition of an amphiphilic model system: a nonequilibrium molecular dynamics simulation study. Guo H; Kremer K J Chem Phys; 2007 Aug; 127(5):054902. PubMed ID: 17688359 [TBL] [Abstract][Full Text] [Related]