These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 21197996)

  • 41. Molecular simulation of the vapor-liquid phase behavior of Lennard-Jones mixtures in porous solids.
    Brennan JK; Dong W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031503. PubMed ID: 12689069
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coarse-graining dipolar interactions in simple fluids and polymer solutions: Monte Carlo studies of the phase behavior.
    Mognetti BM; Virnau P; Yelash L; Paul W; Binder K; Müller M; MacDowell LG
    Phys Chem Chem Phys; 2009 Mar; 11(12):1923-33. PubMed ID: 19280003
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An apparent critical point in binary mixtures: experimental and simulation study.
    Sliwińska-Bartkowiak M; Ratajczak B; Golibrocki L; Banaszak M
    J Chem Phys; 2006 Apr; 124(14):144516. PubMed ID: 16626223
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Solid-liquid coexistence of polydisperse fluids via simulation.
    Wilding NB
    J Chem Phys; 2009 Mar; 130(10):104103. PubMed ID: 19292519
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Freezing of Lennard-Jones-type fluids.
    Khrapak SA; Chaudhuri M; Morfill GE
    J Chem Phys; 2011 Feb; 134(5):054120. PubMed ID: 21303105
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure and dynamics of binary liquid mixtures near their continuous demixing transitions.
    Roy S; Dietrich S; Höfling F
    J Chem Phys; 2016 Oct; 145(13):134505. PubMed ID: 27782419
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Theory of binary mixtures of a rodlike polymer and a liquid crystal.
    Matsuyama A
    J Chem Phys; 2010 Jun; 132(21):214902. PubMed ID: 20528046
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computer simulation study of the global phase behavior of linear rigid Lennard-Jones chain molecules: comparison with flexible models.
    Galindo A; Vega C; Sanz E; MacDowell LG; de Miguel E; Blas FJ
    J Chem Phys; 2004 Feb; 120(8):3957-68. PubMed ID: 15268561
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temperature and composition dependence of the Soret coefficient in Lennard-Jones mixtures presenting evaporation/condensation phase transition.
    Leonardi E; D'Aguanno B; Angeli C
    J Chem Phys; 2011 Mar; 134(11):114512. PubMed ID: 21428637
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simulation of chemical potentials and phase equilibria in two- and three-dimensional square-well fluids: finite size effects.
    Vörtler HL; Schäfer K; Smith WR
    J Phys Chem B; 2008 Apr; 112(15):4656-61. PubMed ID: 18358019
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Finite-size scaling study of the vapor-liquid critical properties of confined fluids: Crossover from three dimensions to two dimensions.
    Liu Y; Panagiotopoulos AZ; Debenedetti PG
    J Chem Phys; 2010 Apr; 132(14):144107. PubMed ID: 20405985
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coarse-grained models for fluids and their mixtures: Comparison of Monte Carlo studies of their phase behavior with perturbation theory and experiment.
    Mognetti BM; Virnau P; Yelash L; Paul W; Binder K; Müller M; MacDowell LG
    J Chem Phys; 2009 Jan; 130(4):044101. PubMed ID: 19191371
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toward a robust and general molecular simulation method for computing solid-liquid coexistence.
    Eike DM; Brennecke JF; Maginn EJ
    J Chem Phys; 2005 Jan; 122(1):14115. PubMed ID: 15638650
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Liquid crystal phase transitions in systems of colloidal platelets with bimodal shape distribution.
    Verhoeff AA; Wensink HH; Vis M; Jackson G; Lekkerkerker HN
    J Phys Chem B; 2009 Oct; 113(41):13476-84. PubMed ID: 19761225
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Temperature and composition dependence of the Soret coefficient in Lennard-Jones mixtures presenting consolute critical phenomena.
    Leonardi E; D'Aguanno B; Angeli C
    J Chem Phys; 2010 Mar; 132(12):124512. PubMed ID: 20370138
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simple model of membrane proteins including solvent.
    Pagan DL; Shiryayev A; Connor TP; Gunton JD
    J Chem Phys; 2006 May; 124(18):184904. PubMed ID: 16709136
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Monte Carlo predictions of phase equilibria and structure for dimethyl ether + sulfur dioxide and dimethyl ether + carbon dioxide.
    Kamath G; Ketko M; Baker GA; Potoff JJ
    J Chem Phys; 2012 Jan; 136(4):044514. PubMed ID: 22299898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two-dimensional systems with competing interactions: microphase formation versus liquid-vapour phase separation.
    Schwanzer DF; Kahl G
    J Phys Condens Matter; 2010 Oct; 22(41):415103. PubMed ID: 21386593
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly non-additive symmetric mixtures at a wall.
    Patrykiejew A
    Phys Chem Chem Phys; 2018 Apr; 20(14):9228-9240. PubMed ID: 29560972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.