These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
567 related articles for article (PubMed ID: 2119805)
1. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Kotlyar AB; Vinogradov AD Biochim Biophys Acta; 1990 Aug; 1019(2):151-8. PubMed ID: 2119805 [TBL] [Abstract][Full Text] [Related]
2. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether. Suzuki H; Wakai M; Ozawa T Biochem Int; 1986 Aug; 13(2):351-7. PubMed ID: 3094534 [TBL] [Abstract][Full Text] [Related]
3. Effect of Ca2+ ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Kotlyar AB; Sled VD; Vinogradov AD Biochim Biophys Acta; 1992 Jan; 1098(2):144-50. PubMed ID: 1730007 [TBL] [Abstract][Full Text] [Related]
4. [Activation of complex I in the reaction of NADH oxidation and delta mu H+-dependent NAD+ reduction by succinate]. Kotliar AB Biokhimiia; 1990 Feb; 55(2):195-200. PubMed ID: 2111181 [TBL] [Abstract][Full Text] [Related]
5. Interaction of the mitochondrial NADH-ubiquinone reductase with rotenone as related to the enzyme active/inactive transition. Grivennikova VG; Maklashina EO; Gavrikova EV; Vinogradov AD Biochim Biophys Acta; 1997 Apr; 1319(2-3):223-32. PubMed ID: 9131045 [TBL] [Abstract][Full Text] [Related]
6. Quantitative resolution of succinate-cytochrome c reductase into succinate-ubiquinone and ubiquinol-cytochrome c reductases. Yu L; Yu CA J Biol Chem; 1982 Feb; 257(4):2016-21. PubMed ID: 6276404 [TBL] [Abstract][Full Text] [Related]
7. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Takeshige K; Minakami S Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543 [TBL] [Abstract][Full Text] [Related]
9. [Hysteresis behavior of complex I in delta mu H+-dependent reduction of NAD+ succinate]. Kotliar AB; Vinogradov AD Biokhimiia; 1989 Jan; 54(1):9-16. PubMed ID: 2497801 [TBL] [Abstract][Full Text] [Related]
10. Further observations on the inhibition of NADH oxidase by short chain ubiquinone homologs. Pasquali P; Landi L; Cabrini L; Sechi AM; Lenaz G Boll Soc Ital Biol Sper; 1982 May; 58(10):585-90. PubMed ID: 6810905 [No Abstract] [Full Text] [Related]
11. Inhibition of NADH-ubiquinone reductase activity by N,N'-dicyclohexylcarbodiimide and correlation of this inhibition with the occurrence of energy-coupling site 1 in various organisms. Yagi T Biochemistry; 1987 May; 26(10):2822-8. PubMed ID: 3111526 [TBL] [Abstract][Full Text] [Related]
12. Direct interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c oxidoreductases probed by sensitivity to quinone-related inhibitors. Yamashita A; Miyoshi H; Hatano T; Iwamura H J Biochem; 1996 Aug; 120(2):377-84. PubMed ID: 8889824 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the inhibitory action of natural rotenone and its stereoisomers with various NADH-ubiquinone reductases. Ueno H; Miyoshi H; Ebisui K; Iwamura H Eur J Biochem; 1994 Oct; 225(1):411-7. PubMed ID: 7925463 [TBL] [Abstract][Full Text] [Related]
14. Effect of iron deficiency on succinate- and NADH-ubiquinone oxidoreductases in skeletal muscle mitochondria. Ackrell BA; Maguire JJ; Dallman PR; Kearney EB J Biol Chem; 1984 Aug; 259(16):10053-9. PubMed ID: 6432778 [TBL] [Abstract][Full Text] [Related]
15. The interaction of arylazido ubiquinone derivative with mitochondrial ubiquinol-cytochrome c reductase. Yu L; Yu CA J Biol Chem; 1982 Sep; 257(17):10215-21. PubMed ID: 6286644 [No Abstract] [Full Text] [Related]
16. Kinetic indication for multiple sites of ubiquinol-1 interaction in ubiquinol-cytochrome c reductase in bovine heart mitochondria. Esposti MD; Lenaz G Arch Biochem Biophys; 1982 Jul; 216(2):727-35. PubMed ID: 6287942 [No Abstract] [Full Text] [Related]
17. Lipid peroxidation and the reduction of ADP-Fe3+ chelate by NADH-ubiquinone reductase preparation from bovine heart mitochondria. Takeshige K; Takayanagi R; Minakami S Biochem J; 1980 Dec; 192(3):861-6. PubMed ID: 6786284 [TBL] [Abstract][Full Text] [Related]
18. Coupling site I and the rotenone-sensitive ubisemiquinone in tightly coupled submitochondrial particles. Kotlyar AB; Sled VD; Burbaev DS; Moroz IA; Vinogradov AD FEBS Lett; 1990 May; 264(1):17-20. PubMed ID: 2159893 [TBL] [Abstract][Full Text] [Related]
19. Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influencing NAD(P)H-induced lipid peroxidation. Glinn MA; Lee CP; Ernster L Biochim Biophys Acta; 1997 Jan; 1318(1-2):246-54. PubMed ID: 9030267 [TBL] [Abstract][Full Text] [Related]
20. H+/2e- stoichiometry of the nadh:ubiquinone reductase reaction catalyzed by submitochondrial particles. Galkin AS; Grivennikova VG; Vinogradov AD Biochemistry (Mosc); 2001 Apr; 66(4):435-43. PubMed ID: 11403652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]