BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 2119805)

  • 1. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1990 Aug; 1019(2):151-8. PubMed ID: 2119805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Ca2+ ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Sled VD; Vinogradov AD
    Biochim Biophys Acta; 1992 Jan; 1098(2):144-50. PubMed ID: 1730007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Activation of complex I in the reaction of NADH oxidation and delta mu H+-dependent NAD+ reduction by succinate].
    Kotliar AB
    Biokhimiia; 1990 Feb; 55(2):195-200. PubMed ID: 2111181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation.
    Takeshige K; Minakami S
    Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the mechanism of rotenone-insensitive reduction of quinones by mitochondrial NADH:ubiquinone reductase. The high affinity binding of NAD+ and NADH to the reduced enzyme form.
    Cénas NK; Bironaité DA; Kulys JJ
    FEBS Lett; 1991 Jun; 284(2):192-4. PubMed ID: 1905649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Hysteresis behavior of complex I in delta mu H+-dependent reduction of NAD+ succinate].
    Kotliar AB; Vinogradov AD
    Biokhimiia; 1989 Jan; 54(1):9-16. PubMed ID: 2497801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling site I and the rotenone-sensitive ubisemiquinone in tightly coupled submitochondrial particles.
    Kotlyar AB; Sled VD; Burbaev DS; Moroz IA; Vinogradov AD
    FEBS Lett; 1990 May; 264(1):17-20. PubMed ID: 2159893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hysteretic interaction of NADH and Mg2+ with mammalian NADH:CoQ reductase from beef heart.
    Tushurashvili PR; Dekanosidze NZ; Inasaridze NP; Kekelidze TN; Tsartsidze MA; Lomsadze BA
    FEBS Lett; 1989 Feb; 244(2):268-70. PubMed ID: 2493393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory effects of two structurally related carbocyanine laser dyes on the activity of bovine heart mitochondrial and Paracoccus denitrificans NADH-ubiquinone reductase. Evidence for a rotenone-type mechanism.
    Anderson WM; Chambers BB; Wood JM; Benninger L
    Biochem Pharmacol; 1991 Mar; 41(5):677-84. PubMed ID: 1900156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase. Evidence for stoicheiometric association.
    Ragan CI; Heron C
    Biochem J; 1978 Sep; 174(3):783-90. PubMed ID: 215122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase. Restoration of ubiquinone-pool behaviour.
    Heron C; Ragan CI; Trumpower BL
    Biochem J; 1978 Sep; 174(3):791-800. PubMed ID: 215123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of phospholipids in the reduction of ubiquinone analogues by the mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase complex.
    Ragan CI
    Biochem J; 1978 Jun; 172(3):539-47. PubMed ID: 210762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The rotenone-insensitive reduction of quinones and nitrocompounds by mitochondrial NADH:ubiquinone reductase.
    Bironaite DA; Cenas NK; Kulys JJ
    Biochim Biophys Acta; 1991 Oct; 1060(2):203-9. PubMed ID: 1932041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pathway of electron transfer in NADH:Q oxidoreductase.
    van Belzen R; Albracht SP
    Biochim Biophys Acta; 1989 May; 974(3):311-20. PubMed ID: 2499359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal quinone pigments as oxidizers and inhibitors of mitochondrial NADH:ubiquinone reductase.
    Bironaité DA; Cénas NK; Anusevicius ZJ; Medentsev AG; Akimenko VK; Usanov SA
    Arch Biochem Biophys; 1992 Sep; 297(2):253-7. PubMed ID: 1497345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Kinetics of NADH oxidation of NAD+ reduction by mitochondrial complex I].
    Avraam R; Kotliar AB
    Biokhimiia; 1991 Sep; 56(9):1676-87. PubMed ID: 1747428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymology of ubiquinone-utilizing electron transfer complexes in nonionic detergent.
    Weiss H; Wingfield P
    Eur J Biochem; 1979 Aug; 99(1):151-60. PubMed ID: 226366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of proteolytic digestion by chymotrypsin on the structure and catalytic properties of reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase from bovine heart mitochondria.
    Crowder SE; Ragan CI
    Biochem J; 1977 Aug; 165(2):295-301. PubMed ID: 411483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matrix NADH dehydrogenases of plant mitochondria and sites of quinone reduction by complex I.
    Menz RI; Griffith M; Day DA; Wiskich JT
    Eur J Biochem; 1992 Sep; 208(2):481-5. PubMed ID: 1521539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of lipid phase transitions on the interaction of mitochondrial NADH--ubiquinone oxidoreductase with ubiquinol--cytochrome c oxidoreductase.
    Heron C; Gore MG; Ragan CI
    Biochem J; 1979 Feb; 178(2):415-26. PubMed ID: 220964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.