These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 21198053)

  • 21. Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe.
    Kulchin YN; Vitrik OB; Kuchmizhak AA; Nepomnyashchii AV; Savchuk AG; Ionin AA; Kudryashov SI; Makarov SV
    Opt Lett; 2013 May; 38(9):1452-4. PubMed ID: 23632515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays.
    Sathishkumar P; Punyabrahma P; Mrinalini RS; Jayanth GR
    Rev Sci Instrum; 2015 Sep; 86(9):096106. PubMed ID: 26429493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Model-independent quantitative measurement of nanomechanical oscillator vibrations using electron-microscope linescans.
    Wang H; Fenton JC; Chiatti O; Warburton PA
    Rev Sci Instrum; 2013 Jul; 84(7):075002. PubMed ID: 23902094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Freely suspended nanocomposite membranes as highly sensitive sensors.
    Jiang C; Markutsya S; Pikus Y; Tsukruk VV
    Nat Mater; 2004 Oct; 3(10):721-8. PubMed ID: 15448680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor.
    Cheri MS; Latifi H; Sadeghi J; Moghaddam MS; Shahraki H; Hajghassem H
    Analyst; 2014 Jan; 139(2):431-8. PubMed ID: 24291805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multimodal real-time frequency tracking of cantilever arrays in liquid environment for biodetection: Comprehensive setup and performance analysis.
    De Pastina A; Padovani F; Brunetti G; Rotella C; Niosi F; Usov V; Hegner M
    Rev Sci Instrum; 2021 Jun; 92(6):065001. PubMed ID: 34243575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Porous Nanophotonic Optomechanical Beams for Enhanced Mass Adsorption.
    Venkatasubramanian A; Sauer VTK; Westwood-Bachman JN; Cui K; Xia M; Wishart DS; Hiebert WK
    ACS Sens; 2019 May; 4(5):1197-1202. PubMed ID: 30942578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anomalous resonance in a nanomechanical biosensor.
    Gupta AK; Nair PR; Akin D; Ladisch MR; Broyles S; Alam MA; Bashir R
    Proc Natl Acad Sci U S A; 2006 Sep; 103(36):13362-7. PubMed ID: 16938886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications.
    Li M; Tang HX; Roukes ML
    Nat Nanotechnol; 2007 Feb; 2(2):114-20. PubMed ID: 18654230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic thermomechanical response of bimaterial microcantilevers to periodic heating by infrared radiation.
    Kwon B; Rosenberger M; Bhargava R; Cahill DG; King WP
    Rev Sci Instrum; 2012 Jan; 83(1):015003. PubMed ID: 22299979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-speed imaging upgrade for a standard sample scanning atomic force microscope using small cantilevers.
    Adams JD; Nievergelt A; Erickson BW; Yang C; Dukic M; Fantner GE
    Rev Sci Instrum; 2014 Sep; 85(9):093702. PubMed ID: 25273731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laser printing-enabled direct creation of cellular heterogeneity in lab-on-a-chip devices.
    Xiong R; Chai W; Huang Y
    Lab Chip; 2019 Apr; 19(9):1644-1656. PubMed ID: 30924821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Double-side-coated nanomechanical membrane-type surface stress sensor (MSS) for one-chip-one-channel setup.
    Yoshikawa G; Loizeau F; Lee CJ; Akiyama T; Shiba K; Gautsch S; Nakayama T; Vettiger P; de Rooij NF; Aono M
    Langmuir; 2013 Jun; 29(24):7551-6. PubMed ID: 23742183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanomechanical cantilever sensors as a novel tool for real-time monitoring and characterization of surface layer formation.
    Koeser J; Bammerlin M; Battiston FM; Hubler U
    J Nanosci Nanotechnol; 2010 Apr; 10(4):2578-82. PubMed ID: 20355466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging.
    Peng M; Li Z; Liu C; Zheng Q; Shi X; Song M; Zhang Y; Du S; Zhai J; Wang ZL
    ACS Nano; 2015 Mar; 9(3):3143-50. PubMed ID: 25712580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cantilever arrays with self-aligned nanotips of uniform height.
    Koelmans WW; Peters T; Berenschot E; de Boer MJ; Siekman MH; Abelmann L
    Nanotechnology; 2012 Apr; 23(13):135301. PubMed ID: 22418861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever.
    Lee JH; Hwang KS; Park J; Yoon KH; Yoon DS; Kim TS
    Biosens Bioelectron; 2005 Apr; 20(10):2157-62. PubMed ID: 15741091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown.
    Tahvildari R; Beamish E; Tabard-Cossa V; Godin M
    Lab Chip; 2015 Mar; 15(6):1407-11. PubMed ID: 25631885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microcantilever array instrument based on optical fiber and performance analysis.
    Zhang G; Wu L; Li C; Wu S; Zhang Q
    Rev Sci Instrum; 2017 Jul; 88(7):075007. PubMed ID: 28764496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.