These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21198172)

  • 21. The effect of ocular aberrations on retinal laser damage thresholds in the human eye.
    Milsom PK; Till SJ; Rowlands G
    Health Phys; 2006 Jul; 91(1):20-8. PubMed ID: 16775476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of pigmentation density upon 2.0 microm laser irradiation thermal response.
    Chen B; O'Dell DC; Thomsen SL; Thomas RJ; Welch AJ
    Health Phys; 2007 Oct; 93(4):273-8. PubMed ID: 17846523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of human skin opto-thermal response to near-infrared and visible laser irradiations: a theoretical investigation.
    Dai T; Pikkula BM; Wang LV; Anvari B
    Phys Med Biol; 2004 Nov; 49(21):4861-77. PubMed ID: 15584524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationships of skin depths and temperatures when varying pulse repetition frequencies from 2.0-microm laser light incident on pig skin.
    Schaaf D; Johnson T
    J Biomed Opt; 2010; 15(4):045007. PubMed ID: 20799802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Histological and modeling study of skin thermal injury to 2.0 microm laser irradiation.
    Chen B; Thomsen SL; Thomas RJ; Oliver J; Welch AJ
    Lasers Surg Med; 2008 Jul; 40(5):358-70. PubMed ID: 18563778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mathematical model that describes the transition from thermal to photochemical damage in retinal pigment epithelial cell culture.
    Clark CD; Denton ML; Thomas RJ
    J Biomed Opt; 2011 Feb; 16(2):020504. PubMed ID: 21361660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Response of lightly and highly pigmented porcine skin (Sus scrofa domestica) to single 3.8-microm laser radiation pulses.
    Bostick AC; Stoffregen DE; Johnson TE
    J Am Assoc Lab Anim Sci; 2006 May; 45(3):33-7. PubMed ID: 16642968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. corneal epithelial injury thresholds for exposures to 1.54 microm radiation-dependence on beam diameter.
    McCally RL; Bonney-Ray J; Bargeron CB
    Health Phys; 2004 Dec; 87(6):615-24. PubMed ID: 15545768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduction in lateral thermal damage using heat-conducting templates: a comparison of continuous wave and pulsed CO2 lasers.
    Spector N; Spector J; Ellis DL; Reinisch L
    Lasers Surg Med; 2003; 32(2):94-100. PubMed ID: 12561041
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Retinal injury thresholds for blue wavelength lasers.
    Lund DJ; Stuck BE; Edsall P
    Health Phys; 2006 May; 90(5):477-84. PubMed ID: 16607179
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retinal safety of near-infrared lasers in cataract surgery.
    Wang J; Sramek C; Paulus YM; Lavinsky D; Schuele G; Anderson D; Dewey D; Palanker D
    J Biomed Opt; 2012 Sep; 17(9):95001-1. PubMed ID: 23085903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Review of thresholds and recommendations for revised exposure limits for laser and optical radiation for thermally induced retinal injury.
    Schulmeister K; Stuck BE; Lund DJ; Sliney DH
    Health Phys; 2011 Feb; 100(2):210-20. PubMed ID: 21399437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variation of laser-induced retinal injury thresholds with retinal irradiated area: 0.1-s duration, 514-nm exposures.
    Lund DJ; Edsall P; Stuck BE; Schulmeister K
    J Biomed Opt; 2007; 12(2):024023. PubMed ID: 17477738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Damage thresholds for cultured retinal pigment epithelial cells exposed to lasers at 532 nm and 458 nm.
    Denton ML; Foltz MS; Schuster KJ; Estlack LE; Thomas RJ
    J Biomed Opt; 2007; 12(3):034030. PubMed ID: 17614738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal modeling of millimeter wave damage to the primate cornea at 35 GHz and 94 GHz.
    Foster KR; D'Andrea JA; Chalfin S; Hatcher DJ
    Health Phys; 2003 Jun; 84(6):764-9. PubMed ID: 12822586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm.
    Vincelette RL; Rockwell BA; Oliver JW; Kumru SS; Thomas RJ; Schuster KJ; Noojin GD; Shingledecker AD; Stolarski DJ; Welch AJ
    Lasers Surg Med; 2009 Jul; 41(5):382-90. PubMed ID: 19533764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Skin biothermomechanics for medical treatments.
    Xu F; Wen T; Lu TJ; Seffen KA
    J Mech Behav Biomed Mater; 2008 Apr; 1(2):172-87. PubMed ID: 19627782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro model that approximates retinal damage threshold trends.
    Denton ML; Foltz MS; Schuster KJ; Noojin GD; Estlack LE; Thomas RJ
    J Biomed Opt; 2008; 13(5):054014. PubMed ID: 19021394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of two porcine (Sus scrofa domestica) skin models for in vivo near-infrared laser exposure.
    Eggleston TA; Roach WP; Mitchell MA; Smith K; Oler D; Johnson TE
    Comp Med; 2000 Aug; 50(4):391-7. PubMed ID: 11020157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal interaction of short-pulsed laser focused beams with skin tissues.
    Jiao J; Guo Z
    Phys Med Biol; 2009 Jul; 54(13):4225-41. PubMed ID: 19531849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.