BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 21198180)

  • 1. Combined hyperspectral and spectral domain optical coherence tomography microscope for noninvasive hemodynamic imaging.
    Skala MC; Fontanella A; Hendargo H; Dewhirst MW; Izatt JA
    Opt Lett; 2009 Feb; 34(3):289-91. PubMed ID: 19183634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution in vivo optical imaging of stroke injury and repair.
    Sakadžić S; Lee J; Boas DA; Ayata C
    Brain Res; 2015 Oct; 1623():174-92. PubMed ID: 25960347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography.
    Lee J; Radhakrishnan H; Wu W; Daneshmand A; Climov M; Ayata C; Boas DA
    J Cereb Blood Flow Metab; 2013 Jun; 33(6):819-25. PubMed ID: 23403378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrast-enhanced serial optical coherence scanner with deep learning network reveals vasculature and white matter organization of mouse brain.
    Li T; Liu CJ; Akkin T
    Neurophotonics; 2019 Jul; 6(3):035004. PubMed ID: 31338386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preclinical Imaging Biomarkers for Postischaemic Neurovascular Remodelling.
    Gandhi R; Tsoumpas C
    Contrast Media Mol Imaging; 2019; 2019():3128529. PubMed ID: 30863220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical coherence tomography based angiography [Invited].
    Chen CL; Wang RK
    Biomed Opt Express; 2017 Feb; 8(2):1056-1082. PubMed ID: 28271003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities.
    Tang Q; Lin J; Tsytsarev V; Erzurumlu RS; Liu Y; Chen Y
    Neurophotonics; 2017 Jan; 4(1):011009. PubMed ID: 27990452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully distributed absolute blood flow velocity measurement for middle cerebral arteries using Doppler optical coherence tomography.
    Qi L; Zhu J; Hancock AM; Dai C; Zhang X; Frostig RD; Chen Z
    Biomed Opt Express; 2016 Feb; 7(2):601-15. PubMed ID: 26977365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of optical coherence tomography based angiography in neuroscience.
    Baran U; Wang RK
    Neurophotonics; 2016 Jan; 3(1):010902. PubMed ID: 26835484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vivo Voltage-Sensitive Dye Imaging of Subcortical Brain Function.
    Tang Q; Tsytsarev V; Liang CP; Akkentli F; Erzurumlu RS; Chen Y
    Sci Rep; 2015 Nov; 5():17325. PubMed ID: 26612326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-heterogeneity of flow in a mouse model of chronic cerebral hypoperfusion revealed by longitudinal Doppler optical coherence tomography and angiography.
    Srinivasan VJ; Yu E; Radhakrishnan H; Can A; Climov M; Leahy C; Ayata C; Eikermann-Haerter K
    J Cereb Blood Flow Metab; 2015 Oct; 35(10):1552-60. PubMed ID: 26243708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo microvascular network imaging of the human retina combined with an automatic three-dimensional segmentation method.
    Huang S; Piao Z; Zhu J; Lu F; Chen Z
    J Biomed Opt; 2015 Jul; 20(7):76003. PubMed ID: 26169790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional real-time optoacoustic imaging of middle cerebral artery occlusion in mice.
    Kneipp M; Turner J; Hambauer S; Krieg SM; Lehmberg J; Lindauer U; Razansky D
    PLoS One; 2014; 9(4):e96118. PubMed ID: 24776997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in Doppler OCT.
    Liu G; Chen Z
    Chin Opt Lett; 2013; 11(1):11702. PubMed ID: 24443649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of Doppler optical coherence tomography methods.
    Liu G; Lin AJ; Tromberg BJ; Chen Z
    Biomed Opt Express; 2012 Oct; 3(10):2669-80. PubMed ID: 23082305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffuse optical monitoring of repeated cerebral ischemia in mice.
    Shang Y; Chen L; Toborek M; Yu G
    Opt Express; 2011 Oct; 19(21):20301-15. PubMed ID: 21997041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral Doppler optical coherence tomography imaging of localized ischemic stroke in a mouse model.
    Yu L; Nguyen E; Liu G; Choi B; Chen Z
    J Biomed Opt; 2010; 15(6):066006. PubMed ID: 21198180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transit-time analysis based on delay-encoded beam shape for velocity vector quantification by spectral-domain Doppler optical coherence tomography.
    Meng J; Ding Z; Li J; Wang K; Wu T
    Opt Express; 2010 Jan; 18(2):1261-70. PubMed ID: 20173950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development.
    Davis AM; Rothenberg FG; Shepherd N; Izatt JA
    J Opt Soc Am A Opt Image Sci Vis; 2008 Dec; 25(12):3134-43. PubMed ID: 19037405
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.