These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Full domain-decomposition scheme for diffuse optical tomography of large-sized tissues with a combined CPU and GPU parallelization. Yi X; Wang X; Chen W; Wan W; Zhao H; Gao F Appl Opt; 2014 May; 53(13):2754-65. PubMed ID: 24921857 [TBL] [Abstract][Full Text] [Related]
3. High throughput transmission optical projection tomography using low cost graphics processing unit. Vinegoni C; Fexon L; Feruglio PF; Pivovarov M; Figueiredo JL; Nahrendorf M; Pozzo A; Sbarbati A; Weissleder R Opt Express; 2009 Dec; 17(25):22320-32. PubMed ID: 20052155 [TBL] [Abstract][Full Text] [Related]
4. Medical image processing on the GPU - past, present and future. Eklund A; Dufort P; Forsberg D; LaConte SM Med Image Anal; 2013 Dec; 17(8):1073-94. PubMed ID: 23906631 [TBL] [Abstract][Full Text] [Related]
5. A fast forward projection using multithreads for multirays on GPUs in medical image reconstruction. Chou CY; Chuo YY; Hung Y; Wang W Med Phys; 2011 Jul; 38(7):4052-65. PubMed ID: 21859004 [TBL] [Abstract][Full Text] [Related]
6. Fast 2-D ultrasound strain imaging: the benefits of using a GPU. Idzenga T; Gaburov E; Vermin W; Menssen J; de Korte C IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):207-13. PubMed ID: 24402909 [TBL] [Abstract][Full Text] [Related]
7. Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units. Quan G; Gong H; Deng Y; Fu J; Luo Q J Biomed Opt; 2011 Feb; 16(2):026018. PubMed ID: 21361702 [TBL] [Abstract][Full Text] [Related]
9. Fast GPU based adaptive filtering of 4D echocardiography. Broxvall M; Emilsson K; Thunberg P IEEE Trans Med Imaging; 2012 Jun; 31(6):1165-72. PubMed ID: 22167599 [TBL] [Abstract][Full Text] [Related]
10. Implementing capon beamforming on a GPU for real-time cardiac ultrasound imaging. Åsen JP; Buskenes JI; Colombo Nilsen CI; Austeng A; Holm S IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):76-85. PubMed ID: 24402897 [TBL] [Abstract][Full Text] [Related]
11. Computing 2D constrained delaunay triangulation using the GPU. Qi M; Cao TT; Tan TS IEEE Trans Vis Comput Graph; 2013 May; 19(5):736-48. PubMed ID: 23492377 [TBL] [Abstract][Full Text] [Related]
12. Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit. Watanabe Y J Biomed Opt; 2012 May; 17(5):050503. PubMed ID: 22612118 [TBL] [Abstract][Full Text] [Related]
13. Accelerating the nonequispaced fast Fourier transform on commodity graphics hardware. Sorensen TS; Schaeffter T; Noe KO; Hansen MS IEEE Trans Med Imaging; 2008 Apr; 27(4):538-47. PubMed ID: 18390350 [TBL] [Abstract][Full Text] [Related]
14. Fast direct fourier reconstruction of radial and PROPELLER MRI data using the chirp transform algorithm on graphics hardware. Feng Y; Song Y; Wang C; Xin X; Feng Q; Chen W Magn Reson Med; 2013 Oct; 70(4):1087-94. PubMed ID: 23165973 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence molecular tomography using a two-step three-dimensional shape-based reconstruction with graphics processing unit acceleration. Wang D; Qiao H; Song X; Fan Y; Li D Appl Opt; 2012 Dec; 51(36):8731-44. PubMed ID: 23262613 [TBL] [Abstract][Full Text] [Related]
16. Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit. Rasakanthan J; Sugden K; Tomlins PH J Biomed Opt; 2011 Feb; 16(2):020505. PubMed ID: 21361661 [TBL] [Abstract][Full Text] [Related]