These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 21198207)

  • 41. Subchondral bone thickness, hardness and remodelling are influenced by short-term exercise in a site-specific manner.
    Murray RC; Vedi S; Birch HL; Lakhani KH; Goodship AE
    J Orthop Res; 2001 Nov; 19(6):1035-42. PubMed ID: 11781002
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anabolic action of parathyroid hormone (PTH) does not compromise bone matrix mineral composition or maturation.
    Vrahnas C; Pearson TA; Brunt AR; Forwood MR; Bambery KR; Tobin MJ; Martin TJ; Sims NA
    Bone; 2016 Dec; 93():146-154. PubMed ID: 27686599
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Substance P immunohistochemical study of the sensory innervation of normal subchondral bone in the equine metacarpophalangeal joint.
    Nixon AJ; Cummings JF
    Am J Vet Res; 1994 Jan; 55(1):28-33. PubMed ID: 7511359
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Complementary information on bone ultrastructure from scanning small angle X-ray scattering and Fourier-transform infrared microspectroscopy.
    Camacho NP; Rinnerthaler S; Paschalis EP; Mendelsohn R; Boskey AL; Fratzl P
    Bone; 1999 Sep; 25(3):287-93. PubMed ID: 10495132
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fourier transform infrared microspectroscopic analysis identifies alterations in mineral properties in bones from mice transgenic for type X collagen.
    Paschalis EP; Jacenko O; Olsen B; Mendelsohn R; Boskey AL
    Bone; 1996 Aug; 19(2):151-6. PubMed ID: 8853859
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Probing single-tumor cell interactions with different-age type I collagen networks by synchrotron-based Fourier transform infrared microspectroscopy.
    Guilbert M; Eklouh-Molinier C; Wehbe K; Sulé-Suso J; Yang Y; Cinque G; Jeannesson P; Sockalingum GD
    J Biomed Opt; 2014; 19(11):111612. PubMed ID: 25193972
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional adaptation of equine articular cartilage: the formation of regional biochemical characteristics up to age one year.
    Brama PA; Tekoppele JM; Bank RA; Barneveld A; van Weeren PR
    Equine Vet J; 2000 May; 32(3):217-21. PubMed ID: 10836476
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spectroscopic characterization of collagen cross-links in bone.
    Paschalis EP; Verdelis K; Doty SB; Boskey AL; Mendelsohn R; Yamauchi M
    J Bone Miner Res; 2001 Oct; 16(10):1821-8. PubMed ID: 11585346
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition.
    Courtland HW; Nasser P; Goldstone AB; Spevak L; Boskey AL; Jepsen KJ
    Calcif Tissue Int; 2008 Nov; 83(5):342-53. PubMed ID: 18855037
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Altered distributions of bone tissue mineral and collagen properties in women with fragility fractures.
    Wang ZX; Lloyd AA; Burket JC; Gourion-Arsiquaud S; Donnelly E
    Bone; 2016 Mar; 84():237-244. PubMed ID: 26780445
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vibrational spectroscopic monitoring and biochemical analysis of pericellular matrix formation and maturation in a 3-dimensional chondrocyte culture model.
    Owida HA; Rutter AV; Cinque G; Kuiper NJ; Sulé-Suso J; Yang Y
    Analyst; 2018 Dec; 143(24):5979-5986. PubMed ID: 30310903
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of Pyridinoline Trivalent Collagen Cross-Links by Raman Microspectroscopy.
    Gamsjaeger S; Robins SP; Tatakis DN; Klaushofer K; Paschalis EP
    Calcif Tissue Int; 2017 Jun; 100(6):565-574. PubMed ID: 28246932
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of nano-structural and nano-mechanical properties of osteoarthritic subchondral bone.
    Zuo Q; Lu S; Du Z; Friis T; Yao J; Crawford R; Prasadam I; Xiao Y
    BMC Musculoskelet Disord; 2016 Aug; 17(1):367. PubMed ID: 27558702
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fourier transform Infrared spectroscopic characterization of mineralizing type I collagen enzymatic trivalent cross-links.
    Paschalis EP; Gamsjaeger S; Tatakis DN; Hassler N; Robins SP; Klaushofer K
    Calcif Tissue Int; 2015 Jan; 96(1):18-29. PubMed ID: 25424977
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigating the relationship between changes in collagen fiber orientation during skin aging and collagen/water interactions by polarized-FTIR microimaging.
    Eklouh-Molinier C; Happillon T; Bouland N; Fichel C; Diébold MD; Angiboust JF; Manfait M; Brassart-Pasco S; Piot O
    Analyst; 2015 Sep; 140(18):6260-8. PubMed ID: 26120602
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Accretion of bone quantity and quality in the developing mouse skeleton.
    Miller LM; Little W; Schirmer A; Sheik F; Busa B; Judex S
    J Bone Miner Res; 2007 Jul; 22(7):1037-45. PubMed ID: 17402847
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Identification of different Citrus sinensis (L.) Osbeck trees varieties using Fourier transform infrared spectroscopy and hierarchical cluster analysis].
    Yi SL; Deng L; He SL; Shi YM; Zheng YQ; Lu Q; Xie RJ; Wei XG; Li SW; Jian SX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Nov; 32(11):3006-9. PubMed ID: 23387167
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Study of tissue engineered bone nodules by Fourier transform infrared spectroscopy.
    Aydin HM; Hu B; Suso JS; El Haj A; Yang Y
    Analyst; 2011 Feb; 136(4):775-80. PubMed ID: 21152629
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy.
    Mkukuma LD; Skakle JM; Gibson IR; Imrie CT; Aspden RM; Hukins DW
    Calcif Tissue Int; 2004 Oct; 75(4):321-8. PubMed ID: 15549647
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gross, histological and histomorphometric features of the navicular bone and related structures in the horse.
    Wright IM; Kidd L; Thorp BH
    Equine Vet J; 1998 May; 30(3):220-34. PubMed ID: 9622323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.