These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 21198208)

  • 1. Comparison of sorting algorithms to increase the range of Hartmann-Shack aberrometry.
    Bedggood P; Metha A
    J Biomed Opt; 2010; 15(6):067004. PubMed ID: 21198208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic error of a large dynamic range aberrometer.
    Wu P; DeHoog E; Schwiegerling J
    Appl Opt; 2009 Nov; 48(32):6376-80. PubMed ID: 19904339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myopic aberrations: impact of centroiding noise in Hartmann Shack wavefront sensing.
    Akondi V; Vohnsen B
    Ophthalmic Physiol Opt; 2013 Jul; 33(4):434-43. PubMed ID: 23786384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of centroid positions with a matched-filter algorithm: relevance for aberrometry of the eye.
    Leroux C; Dainty C
    Opt Express; 2010 Jan; 18(2):1197-206. PubMed ID: 20173943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution retinal imaging with micro adaptive optics system.
    Niu S; Shen J; Liang C; Zhang Y; Li B
    Appl Opt; 2011 Aug; 50(22):4365-75. PubMed ID: 21833112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Twisted-nematic liquid-crystal-on-silicon adaptive optics aberrometer and wavefront corrector.
    Eng SH; Reinholz F; Chai D
    J Biomed Opt; 2009; 14(4):044014. PubMed ID: 19725726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic errors analysis for a large dynamic range aberrometer based on aberration theory.
    Wu P; Liu S; DeHoog E; Schwiegerling J
    Appl Opt; 2009 Nov; 48(32):6324-31. PubMed ID: 19904333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pupil tracking with a Hartmann-Shack wavefront sensor.
    Arines J; Prado P; Bará S
    J Biomed Opt; 2010; 15(3):036022. PubMed ID: 20615024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavefront control in adaptive microscopy using Shack-Hartmann sensors with arbitrarily shaped pupils.
    Dong B; Booth MJ
    Opt Express; 2018 Jan; 26(2):1655-1669. PubMed ID: 29402037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual wavefront sensing channel monocular adaptive optics system for accommodation studies.
    Hampson KM; Chin SS; Mallen EA
    Opt Express; 2009 Sep; 17(20):18229-40. PubMed ID: 19907614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and validation of a scanning Shack Hartmann aberrometer for measurements of the eye over a wide field of view.
    Wei X; Thibos L
    Opt Express; 2010 Jan; 18(2):1134-43. PubMed ID: 20173936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shack-Hartmann wavefront sensor with large dynamic range.
    Xia M; Li C; Hu L; Cao Z; Mu Q; Xuan L
    J Biomed Opt; 2010; 15(2):026009. PubMed ID: 20459254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of paraxial forward scattering from intraocular lens with increased surface light scattering using goniophotometry and Hartmann-Shack wavefront aberrometry.
    Minami K; Maruyama Y; Mihashi T; Miyata K; Oshika T
    Jpn J Ophthalmol; 2017 Mar; 61(2):189-194. PubMed ID: 28062928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Algorithm and experiment of whole-aperture wavefront reconstruction from annular subaperture Hartmann-Shack gradient data.
    Xu H; Xian H; Zhang Y
    Opt Express; 2010 Jun; 18(13):13431-43. PubMed ID: 20588474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the comparability and repeatability of four wavefront aberrometers.
    Visser N; Berendschot TT; Verbakel F; Tan AN; de Brabander J; Nuijts RM
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1302-11. PubMed ID: 21051697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system.
    Zou W; Qi X; Burns SA
    Opt Lett; 2008 Nov; 33(22):2602-4. PubMed ID: 19015681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of ocular aberrations measured by a Fourier-based Hartmann-Shack and Zernike-based Tscherning aberrometer before and after laser in situ keratomileusis.
    Sáles CS; Manche EE
    J Cataract Refract Surg; 2015 Sep; 41(9):1820-5. PubMed ID: 26603389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength adjustment using an eye model from aberrometry data.
    Nam J; Rubinstein J; Thibos L
    J Opt Soc Am A Opt Image Sci Vis; 2010 Jul; 27(7):1561-74. PubMed ID: 20596142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of forward light scatter estimations using Shack-Hartmann spot patterns and a straylight meter.
    Benito Lopez P; Radhakrishnan H; Nourrit V
    J Cataract Refract Surg; 2015 Feb; 41(2):320-6. PubMed ID: 25661125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavefront-guided myopic femto-LASIK based on measurements with a new Hartmann-Shack aberrometer.
    Moshegov CN; Skaf S
    Clin Exp Ophthalmol; 2015; 43(4):395-6. PubMed ID: 25255834
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.