These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21198213)

  • 1. Evaluation of a novel noncontact spectrally and spatially resolved reflectance setup with continuously variable source-detector separation using silicone phantoms.
    Andree S; Reble C; Helfmann J; Gersonde I; Illing G
    J Biomed Opt; 2010; 15(6):067009. PubMed ID: 21198213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients.
    Kim A; Roy M; Dadani F; Wilson BC
    Opt Express; 2010 Mar; 18(6):5580-94. PubMed ID: 20389574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo.
    Yu B; Lo JY; Kuech TF; Palmer GM; Bender JE; Ramanujam N
    J Biomed Opt; 2008; 13(6):060505. PubMed ID: 19123646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media.
    Sharma D; Agrawal A; Matchette LS; Pfefer TJ
    Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gen-2 hand-held optical imager towards cancer imaging: reflectance and transillumination phantom studies.
    Gonzalez J; Roman M; Hall M; Godavarty A
    Sensors (Basel); 2012; 12(2):1885-97. PubMed ID: 22438743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instrument independent diffuse reflectance spectroscopy.
    Yu B; Fu HL; Ramanujam N
    J Biomed Opt; 2011; 16(1):011010. PubMed ID: 21280897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response.
    Geis MW; Spector SJ; Grein ME; Yoon JU; Lennon DM; Lyszczarz TM
    Opt Express; 2009 Mar; 17(7):5193-204. PubMed ID: 19333283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide.
    Vivien L; Osmond J; Fédéli JM; Marris-Morini D; Crozat P; Damlencourt JF; Cassan E; Lecunff Y; Laval S
    Opt Express; 2009 Apr; 17(8):6252-7. PubMed ID: 19365450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue.
    Kienle A; Lilge L; Patterson MS; Hibst R; Steiner R; Wilson BC
    Appl Opt; 1996 May; 35(13):2304-14. PubMed ID: 21085367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fiber optic probe design to measure depth-limited optical properties in-vivo with low-coherence enhanced backscattering (LEBS) spectroscopy.
    Mutyal NN; Radosevich A; Gould B; Rogers JD; Gomes A; Turzhitsky V; Backman V
    Opt Express; 2012 Aug; 20(18):19643-57. PubMed ID: 23037017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Monte Carlo study for optimizing the detector of SPECT imaging using a XCAT human phantom.
    Khoshakhlagh M; Pirayesh Islamian J; Abedi SM; Mahmoudian B; Shayesteh Azar M
    Nucl Med Rev Cent East Eur; 2017; 20(1):10-14. PubMed ID: 28198517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging.
    Pham TH; Bevilacqua F; Spott T; Dam JS; Tromberg BJ; Andersson-Engels S
    Appl Opt; 2000 Dec; 39(34):6487-97. PubMed ID: 18354662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-contact time-resolved diffuse reflectance imaging at null source-detector separation.
    Mazurenka M; Jelzow A; Wabnitz H; Contini D; Spinelli L; Pifferi A; Cubeddu R; Mora AD; Tosi A; Zappa F; Macdonald R
    Opt Express; 2012 Jan; 20(1):283-90. PubMed ID: 22274351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evaluation of LED-based solar blind NLOS communication links.
    Chen G; Abou-Galala F; Xu Z; Sadler BM
    Opt Express; 2008 Sep; 16(19):15059-68. PubMed ID: 18795043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements.
    Sun J; Fu K; Wang A; Lin AW; Utzinger U; Drezek R
    Appl Opt; 2006 Nov; 45(31):8152-62. PubMed ID: 17068558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical properties of the crescent and coherent applications.
    Wang Y; Zhou W; Liu A; Chen W; Fu F; Yan X; Jiang B; Xue Q; Zheng W
    Opt Express; 2011 Apr; 19(9):8303-11. PubMed ID: 21643081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Video-rate near-infrared optical tomography using spectrally encoded parallel light delivery.
    Piao D; Jiang S; Srinivasan S; Dehghani H; Pogue BW
    Opt Lett; 2005 Oct; 30(19):2593-5. PubMed ID: 16208910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband Mie scattering from optically levitated aerosol droplets using a white LED.
    Ward AD; Zhang M; Hunt O
    Opt Express; 2008 Oct; 16(21):16390-403. PubMed ID: 18852745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of broadband radially polarized terahertz radiation directly on a cylindrical metal wire.
    Zhu W; Agrawal A; Cao H; Nahata A
    Opt Express; 2008 Jun; 16(12):8433-9. PubMed ID: 18545557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.