These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21198216)

  • 1. Interaction dynamics of spatially separated cavitation bubbles in water.
    Tinne N; Schumacher S; Nuzzo V; Arnold CL; Lubatschowski H; Ripken T
    J Biomed Opt; 2010; 15(6):068003. PubMed ID: 21198216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids.
    Faccio D; Tamošauskas G; Rubino E; Darginavičius J; Papazoglou DG; Tzortzakis S; Couairon A; Dubietis A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036304. PubMed ID: 23031010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction mechanisms of cavitation bubbles induced by spatially and temporally separated fs-laser pulses.
    Tinne N; Kaune B; Krüger A; Ripken T
    PLoS One; 2014; 9(12):e114437. PubMed ID: 25502697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-organization of ascending-bubble ensembles.
    Barmina EV; Kirichenko NA; Kuzmin PG; Shafeev GA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053001. PubMed ID: 23767614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cavitation bubble interaction with temporally separated fs-laser pulses.
    Tinne N; Knoop G; Kallweit N; Veith S; Bleeker S; Lubatschowski H; Krüger A; Ripken T
    J Biomed Opt; 2014 Apr; 19(4):048001. PubMed ID: 24781592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of optical breakdown in BK7 glass induced by an extended-cavity femtosecond laser oscillator.
    Do BT; Phillips MC; Miller PA; Kimmel MW; Britsch J; Cho SH
    Opt Express; 2009 Feb; 17(4):2739-55. PubMed ID: 19219179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The inception of cavitation bubble clouds induced by high-intensity focused ultrasound.
    Chen H; Li X; Wan M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e427-9. PubMed ID: 16782158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of dissolved-air concentration on spatial distribution of bubbles for sonochemistry.
    Tuziuti T; Yasui K; Sivakumar M; Iida Y
    Ultrasonics; 2006 Dec; 44 Suppl 1():e357-61. PubMed ID: 16780909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trapping cavitation bubbles with a self-focused laser beam.
    Ye JY; Chang G; Norris TB; Tse C; Zohdy MJ; Hollman KW; O'Donnell M; Baker JR
    Opt Lett; 2004 Sep; 29(18):2136-8. PubMed ID: 15460881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial study on a multibubble system for sonochemistry by laser-light scattering.
    Tuziuti T; Yasui K; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):73-7. PubMed ID: 15474955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cavitation bubble dynamics in microfluidic gaps of variable height.
    Quinto-Su PA; Lim KY; Ohl CD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):047301. PubMed ID: 19905487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser filamentation induced air-flow motion in a diffusion cloud chamber.
    Sun H; Liu J; Wang C; Ju J; Wang Z; Wang W; Ge X; Li C; Chin SL; Li R; Xu Z
    Opt Express; 2013 Apr; 21(8):9255-66. PubMed ID: 23609636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-threshold cavitation in water using IR laser pulse trains.
    Zheltov GI; Lisinetskii VA; Grabtchikov AS; Orlovich VA
    Appl Opt; 2008 Jul; 47(20):3549-54. PubMed ID: 18617970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaotic dynamics in a two-dimensional optical lattice.
    Horsley E; Koppell S; Reichl LE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012917. PubMed ID: 24580307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma filament investigation by transverse optical interferometry and terahertz scattering.
    Bodrov S; Bukin V; Tsarev M; Murzanev A; Garnov S; Aleksandrov N; Stepanov A
    Opt Express; 2011 Mar; 19(7):6829-35. PubMed ID: 21451710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong terahertz pulse generation by chirped laser pulses in tenuous gases.
    Wang WM; Sheng ZM; Wu HC; Chen M; Li C; Zhang J; Mima K
    Opt Express; 2008 Oct; 16(21):16999-7006. PubMed ID: 18852809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between shock wave and single inertial bubbles near an elastic boundary.
    Sankin GN; Zhong P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046304. PubMed ID: 17155170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic cavitation, bubble dynamics and sonoluminescence.
    Lauterborn W; Kurz T; Geisler R; Schanz D; Lindau O
    Ultrason Sonochem; 2007 Apr; 14(4):484-91. PubMed ID: 17254826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.