BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21198545)

  • 21. Romidepsin and Afatinib Abrogate Jak-Signal Transducer and Activator of Transcription Signaling and Elicit Synergistic Antitumor Effects in Cutaneous T-Cell Lymphoma.
    Shih BB; Ma C; Cortes JR; Reglero C; Miller H; Quinn SA; Albero R; Laurent AP; Mackey A; Ferrando AA; Geskin L; Palomero T
    J Invest Dermatol; 2024 Jan; ():. PubMed ID: 38219917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The thiol methyltransferase activity of TMT1A (METTL7A) is conserved across species.
    González Dalmasy JM; Fitzsimmons CM; Frye WJE; Perciaccante AJ; Jewell CP; Jenkins LM; Batista PJ; Robey RW; Gottesman MM
    Chem Biol Interact; 2024 May; 394():110989. PubMed ID: 38574836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sézary syndrome): part II. Prognosis, management, and future directions.
    Jawed SI; Myskowski PL; Horwitz S; Moskowitz A; Querfeld C
    J Am Acad Dermatol; 2014 Feb; 70(2):223.e1-17; quiz 240-2. PubMed ID: 24438970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HDAC inhibitors for the treatment of cutaneous T-cell lymphomas.
    Rangwala S; Zhang C; Duvic M
    Future Med Chem; 2012 Mar; 4(4):471-86. PubMed ID: 22416775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Role of Cytokines in Cutaneous T Cell Lymphoma: A Focus on the State of the Art and Possible Therapeutic Targets.
    Guglielmo A; Zengarini C; Agostinelli C; Motta G; Sabattini E; Pileri A
    Cells; 2024 Mar; 13(7):. PubMed ID: 38607023
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding Cancer's Defense against Topoisomerase-Active Drugs: A Comprehensive Review.
    Sharma NK; Bahot A; Sekar G; Bansode M; Khunteta K; Sonar PV; Hebale A; Salokhe V; Sinha BK
    Cancers (Basel); 2024 Feb; 16(4):. PubMed ID: 38398072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MicroRNA-Mediated Regulation of Histone-Modifying Enzymes in Cancer: Mechanisms and Therapeutic Implications.
    Szczepanek J; Tretyn A
    Biomolecules; 2023 Oct; 13(11):. PubMed ID: 38002272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NF-κB Signaling in Tumor Pathways Focusing on Breast and Ovarian Cancer.
    Devanaboyina M; Kaur J; Whiteley E; Lin L; Einloth K; Morand S; Stanbery L; Hamouda D; Nemunaitis J
    Oncol Rev; 2022; 16():10568. PubMed ID: 36531159
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DOT1L inhibition does not modify the sensitivity of cutaneous T cell lymphoma to pan-HDAC inhibitors
    Kwesi-Maliepaard EM; Malik M; van Welsem T; van Doorn R; Vermeer MH; Vlaming H; Jacobs H; van Leeuwen F
    Front Genet; 2022; 13():1032958. PubMed ID: 36425063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of protein acetylation in carcinogenesis and targeted drug discovery.
    Yang J; Song C; Zhan X
    Front Endocrinol (Lausanne); 2022; 13():972312. PubMed ID: 36171897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide identification of alternative splicing associated with histone deacetylase inhibitor in cutaneous T-cell lymphomas.
    Yu S; Zhang J; Ding Y; Kang X; Pu X
    Front Genet; 2022; 13():937623. PubMed ID: 36147491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HDAC Inhibitors: Dissecting Mechanisms of Action to Counter Tumor Heterogeneity.
    Karagiannis D; Rampias T
    Cancers (Basel); 2021 Jul; 13(14):. PubMed ID: 34298787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Small-molecule inhibitors of histone deacetylase improve CRISPR-based adenine base editing.
    Shin HR; See JE; Kweon J; Kim HS; Sung GJ; Park S; Jang AH; Jang G; Choi KC; Kim I; Kim JS; Kim Y
    Nucleic Acids Res; 2021 Feb; 49(4):2390-2399. PubMed ID: 33544854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibiting Histone Deacetylases in Human Macrophages Promotes Glycolysis, IL-1β, and T Helper Cell Responses to
    Cox DJ; Coleman AM; Gogan KM; Phelan JJ; Ó Maoldomhnaigh C; Dunne PJ; Basdeo SA; Keane J
    Front Immunol; 2020; 11():1609. PubMed ID: 32793237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of Epigenetic Modifications in Inhibitory Immune Checkpoints in Cancer Development and Progression.
    Saleh R; Toor SM; Sasidharan Nair V; Elkord E
    Front Immunol; 2020; 11():1469. PubMed ID: 32760400
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated Assessment of Viral Transcription, Antigen Presentation, and CD8
    Mota TM; McCann CD; Danesh A; Huang SH; Magat DB; Ren Y; Leyre L; Bui TD; Rohwetter TM; Kovacs CM; Benko E; MacLaren L; Wimpelberg A; Cannon CM; Hardy WD; Safrit JT; Jones RB
    J Virol; 2020 Apr; 94(9):. PubMed ID: 32051267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel cell adhesion/migration pathways are predictive markers of HDAC inhibitor resistance in cutaneous T cell lymphoma.
    Andrews JM; Schmidt JA; Carson KR; Musiek AC; Mehta-Shah N; Payton JE
    EBioMedicine; 2019 Aug; 46():170-183. PubMed ID: 31358475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid (SAHA) Restores Cardiomyocyte Contractility in a Rat Model of Early Diabetes.
    Bocchi L; Motta BM; Savi M; Vilella R; Meraviglia V; Rizzi F; Galati S; Buschini A; Lazzaretti M; Pramstaller PP; Rossini A; Stilli D
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31014028
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.