These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 21198682)
21. The fate and transport of the Cry1Ab protein in an agricultural field and laboratory aquatic microcosms. Strain KE; Lydy MJ Chemosphere; 2015 Aug; 132():94-100. PubMed ID: 25828252 [TBL] [Abstract][Full Text] [Related]
22. Varietal effects of eight paired lines of transgenic Bt maize and near-isogenic non-Bt maize on soil microbial and nematode community structure. Griffiths BS; Heckmann LH; Caul S; Thompson J; Scrimgeour C; Krogh PH Plant Biotechnol J; 2007 Jan; 5(1):60-8. PubMed ID: 17207257 [TBL] [Abstract][Full Text] [Related]
23. Field trials to evaluate effects of Bt-transgenic silage corn expressing the Cry1Ab insecticidal toxin on non-target soil arthropods in northern New England, USA. Priestley AL; Brownbridge M Transgenic Res; 2009 Jun; 18(3):425-43. PubMed ID: 19083116 [TBL] [Abstract][Full Text] [Related]
24. A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Marvier M; McCreedy C; Regetz J; Kareiva P Science; 2007 Jun; 316(5830):1475-7. PubMed ID: 17556584 [TBL] [Abstract][Full Text] [Related]
25. Effect on soil chemistry of genetically modified (GM) vs. non-GM maize. Liu N; Zhu P; Peng C; Kang L; Gao H; Clarke NJ; Clarke JL GM Crops; 2010; 1(3):157-61. PubMed ID: 21844670 [TBL] [Abstract][Full Text] [Related]
27. Use of maize pollen by adult Chrysoperla carnea (Neuroptera: Chrysopidae) and fate of Cry proteins in Bt-transgenic varieties. Li Y; Meissle M; Romeis J J Insect Physiol; 2010 Feb; 56(2):157-64. PubMed ID: 19782688 [TBL] [Abstract][Full Text] [Related]
28. Arbuscular mycorrhizal fungi in chronically petroleum-contaminated soils in Mexico and the effects of petroleum hydrocarbons on spore germination. Franco-Ramírez A; Ferrera-Cerrato R; Varela-Fregoso L; Pérez-Moreno J; Alarcón A J Basic Microbiol; 2007 Oct; 47(5):378-83. PubMed ID: 17910101 [TBL] [Abstract][Full Text] [Related]
29. Interactions among Bt maize, entomopathogens, and rootworm species (Coleoptera: Chrysomelidae) in the field: effects on survival, yield, and root injury. Petzold-Maxwell JL; Jaronski ST; Clifton EH; Dunbar MW; Jackson MA; Gassmann AJ J Econ Entomol; 2013 Apr; 106(2):622-32. PubMed ID: 23786047 [TBL] [Abstract][Full Text] [Related]
30. Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile respond differently to phosphorus inputs on a long-term experimental site. Wang C; White PJ; Li C Mycorrhiza; 2017 May; 27(4):369-381. PubMed ID: 28039601 [TBL] [Abstract][Full Text] [Related]
31. Bt toxin uptake from soil by plants. Saxena D; Stotzky G Nat Biotechnol; 2001 Mar; 19(3):199. PubMed ID: 11231541 [No Abstract] [Full Text] [Related]
32. F2 screen for resistance to a Bacillus thuringiensis-maize hybrid in the sugarcane borer (Lepidoptera: Crambidae). Huang FN; Leonard BR; Andow DA Bull Entomol Res; 2007 Oct; 97(5):437-44. PubMed ID: 17916262 [TBL] [Abstract][Full Text] [Related]
33. Arbuscular mycorrhizal fungus enhances P acquisition of wheat (Triticum aestivum L.) in a sandy loam soil with long-term inorganic fertilization regime. Hu J; Lin X; Wang J; Cui X; Dai J; Chu H; Zhang J Appl Microbiol Biotechnol; 2010 Oct; 88(3):781-7. PubMed ID: 20683717 [TBL] [Abstract][Full Text] [Related]
34. Fate of Bacillus thuringiensis (Bt) Cry3Bb1 protein in a soil microcosm. Prihoda KR; Coats JR Chemosphere; 2008 Oct; 73(7):1102-7. PubMed ID: 18768202 [TBL] [Abstract][Full Text] [Related]
35. Spatial distribution of Aglais urticae (L.) and its host plant Urtica dioica (L.) in an agricultural landscape: implications for Bt maize risk assessment and post-market monitoring. Gathmann A; Wirooks L; Eckert J; Schuphan I Environ Biosafety Res; 2006; 5(1):27-36. PubMed ID: 16978572 [TBL] [Abstract][Full Text] [Related]
36. Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride. Naef A; Zesiger T; Défago G J Environ Qual; 2006; 35(4):1001-9. PubMed ID: 16738384 [TBL] [Abstract][Full Text] [Related]
37. [Genetic transformation of Bt gene into sorghum (Sorghum bicolor L.) mediated by Agrobacterium tumefaciens]. Zhang M; Tang Q; Chen Z; Liu J; Cui H; Shu Q; Xia Y; Altosaar I Sheng Wu Gong Cheng Xue Bao; 2009 Mar; 25(3):418-23. PubMed ID: 19621584 [TBL] [Abstract][Full Text] [Related]
38. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent. Himanen SJ; Nerg AM; Nissinen A; Stewart CN; Poppy GM; Holopainen JK Environ Pollut; 2009 Jan; 157(1):181-5. PubMed ID: 18757127 [TBL] [Abstract][Full Text] [Related]
39. Arsenic accumulation and speciation in maize as affected by inoculation with arbuscular mycorrhizal fungus Glomus mosseae. Yu Y; Zhang S; Huang H; Luo L; Wen B J Agric Food Chem; 2009 May; 57(9):3695-701. PubMed ID: 19296577 [TBL] [Abstract][Full Text] [Related]
40. Effects of oral Bt-maize (MON810) exposure on growth and health parameters in normal and sensitised Atlantic salmon, Salmo salar L. Gu J; Krogdahl Å; Sissener NH; Kortner TM; Gelencser E; Hemre GI; Bakke AM Br J Nutr; 2013 Apr; 109(8):1408-23. PubMed ID: 23182224 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]