These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 2119912)
1. Potassium accumulation in the globally ischemic mammalian heart. A role for the ATP-sensitive potassium channel. Wilde AA; Escande D; Schumacher CA; Thuringer D; Mestre M; Fiolet JW; Janse MJ Circ Res; 1990 Oct; 67(4):835-43. PubMed ID: 2119912 [TBL] [Abstract][Full Text] [Related]
2. Effects of ATP-sensitive K+ channel blockers on the action potential shortening in hypoxic and ischaemic myocardium. Nakaya H; Takeda Y; Tohse N; Kanno M Br J Pharmacol; 1991 May; 103(1):1019-26. PubMed ID: 1908730 [TBL] [Abstract][Full Text] [Related]
3. Sulfonylureas, ATP-sensitive K+ channels, and cellular K+ loss during hypoxia, ischemia, and metabolic inhibition in mammalian ventricle. Venkatesh N; Lamp ST; Weiss JN Circ Res; 1991 Sep; 69(3):623-37. PubMed ID: 1908355 [TBL] [Abstract][Full Text] [Related]
4. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder. Bonev AD; Nelson MT Am J Physiol; 1993 May; 264(5 Pt 1):C1190-200. PubMed ID: 8498480 [TBL] [Abstract][Full Text] [Related]
5. Partial contribution of the ATP-sensitive K+ current to the effects of mild metabolic depression in rabbit myocardium. de Lorenzi F; Cai S; Schanne OF; Ruiz Petrich E Mol Cell Biochem; 1994 Mar; 132(2):133-43. PubMed ID: 7969096 [TBL] [Abstract][Full Text] [Related]
6. Sulphonylurea drugs no longer inhibit ATP-sensitive K+ channels during metabolic stress in cardiac muscle. Findlay I J Pharmacol Exp Ther; 1993 Jul; 266(1):456-67. PubMed ID: 8331572 [TBL] [Abstract][Full Text] [Related]
7. Electrophysiologic and extracellular ionic changes during acute ischemia in failing and normal rabbit myocardium. Vermeulen JT; Tan HL; Rademaker H; Schumacher CA; Loh P; Opthof T; Coronel R; Janse MJ J Mol Cell Cardiol; 1996 Jan; 28(1):123-31. PubMed ID: 8745220 [TBL] [Abstract][Full Text] [Related]
8. Contribution of ATP-sensitive potassium channels to the electrophysiological effects of adenosine in guinea-pig atrial cells. Li GR; Feng J; Shrier A; Nattel S J Physiol; 1995 May; 484 ( Pt 3)(Pt 3):629-42. PubMed ID: 7623281 [TBL] [Abstract][Full Text] [Related]
9. Endogenous adenosine does not activate ATP-sensitive potassium channels in the hypoxic guinea pig ventricle in vivo. Xu J; Wang L; Hurt CM; Pelleg A Circulation; 1994 Mar; 89(3):1209-16. PubMed ID: 8124809 [TBL] [Abstract][Full Text] [Related]
10. Effects of glibenclamide and nicorandil on cardiac function during ischemia and reperfusion in isolated perfused rat hearts. Mitani A; Kinoshita K; Fukamachi K; Sakamoto M; Kurisu K; Tsuruhara Y; Fukumura F; Nakashima A; Tokunaga K Am J Physiol; 1991 Dec; 261(6 Pt 2):H1864-71. PubMed ID: 1836311 [TBL] [Abstract][Full Text] [Related]
11. Glibenclamide inhibition of ATP-sensitive K+ channels and ischemia-induced K+ accumulation in the mammalian heart. Wilde AA; Escande D; Schumacher CA; Thuringer D; Mestre M; Fiolet JW Pflugers Arch; 1989; 414 Suppl 1():S176. PubMed ID: 2506522 [No Abstract] [Full Text] [Related]
12. Anoxia-induced activation of ATP-sensitive K+ channels in guinea pig ventricular cells and its modulation by glycolysis. Shigematsu S; Arita M Cardiovasc Res; 1997 Aug; 35(2):273-82. PubMed ID: 9349390 [TBL] [Abstract][Full Text] [Related]
13. Role for ATP-sensitive K+ channel in the development of A-V block during hypoxia. Sawanobori T; Adaniya H; Yukisada H; Hiraoka M J Mol Cell Cardiol; 1995 Jan; 27(1):647-57. PubMed ID: 7760383 [TBL] [Abstract][Full Text] [Related]
14. Blockade of 2,4-dinitrophenol induced ATP sensitive potassium current in guinea pig ventricular myocytes by class I antiarrhythmic drugs. Wu B; Sato T; Kiyosue T; Arita M Cardiovasc Res; 1992 Nov; 26(11):1095-101. PubMed ID: 1291087 [TBL] [Abstract][Full Text] [Related]
15. Identification and properties of ATP-sensitive potassium channels in myocytes from rabbit Purkinje fibres. Light PE; Cordeiro JM; French RJ Cardiovasc Res; 1999 Nov; 44(2):356-69. PubMed ID: 10690312 [TBL] [Abstract][Full Text] [Related]
16. Activation of ATP-sensitive K+ channels by cromakalim. Effects on cellular K+ loss and cardiac function in ischemic and reperfused mammalian ventricle. Venkatesh N; Stuart JS; Lamp ST; Alexander LD; Weiss JN Circ Res; 1992 Dec; 71(6):1324-33. PubMed ID: 1423930 [TBL] [Abstract][Full Text] [Related]
17. BRL 34915 (cromakalim) activates ATP-sensitive K+ current in cardiac muscle. Sanguinetti MC; Scott AL; Zingaro GJ; Siegl PK Proc Natl Acad Sci U S A; 1988 Nov; 85(21):8360-4. PubMed ID: 2460868 [TBL] [Abstract][Full Text] [Related]
18. Pharmacological evidence for the persistent activation of ATP-sensitive K+ channels in early phase of reperfusion and its protective role against myocardial stunning. Shigematsu S; Sato T; Abe T; Saikawa T; Sakata T; Arita M Circulation; 1995 Oct; 92(8):2266-75. PubMed ID: 7554211 [TBL] [Abstract][Full Text] [Related]
19. Bepridil blunts the shortening of action potential duration caused by metabolic inhibition via blockade of ATP-sensitive K(+) channels and Na(+)-activated K(+) channels. Li Y; Sato T; Arita M J Pharmacol Exp Ther; 1999 Nov; 291(2):562-8. PubMed ID: 10525072 [TBL] [Abstract][Full Text] [Related]
20. Effect of temperature on the activation of myocardial KATP channel in guinea pig ventricular myocytes: a pilot study by whole cell patch clamp recording. Jin SQ; Niu LJ; Deng CY; Yao ZB; Zhou YJ Chin Med J (Engl); 2006 Oct; 119(20):1721-6. PubMed ID: 17097020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]