These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 21199562)
1. Venturia inaequalis: the causal agent of apple scab. Bowen JK; Mesarich CH; Bus VG; Beresford RM; Plummer KM; Templeton MD Mol Plant Pathol; 2011 Feb; 12(2):105-22. PubMed ID: 21199562 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range. Deng CH; Plummer KM; Jones DAB; Mesarich CH; Shiller J; Taranto AP; Robinson AJ; Kastner P; Hall NE; Templeton MD; Bowen JK BMC Genomics; 2017 May; 18(1):339. PubMed ID: 28464870 [TBL] [Abstract][Full Text] [Related]
3. The Venturia inaequalis effector repertoire is dominated by expanded families with predicted structural similarity, but unrelated sequence, to avirulence proteins from other plant-pathogenic fungi. Rocafort M; Bowen JK; Hassing B; Cox MP; McGreal B; de la Rosa S; Plummer KM; Bradshaw RE; Mesarich CH BMC Biol; 2022 Nov; 20(1):246. PubMed ID: 36329441 [TBL] [Abstract][Full Text] [Related]
4. Cell Wall Carbohydrate Dynamics during the Differentiation of Infection Structures by the Apple Scab Fungus, Venturia inaequalis. Rocafort M; Srivastava V; Bowen JK; Díaz-Moreno SM; Guo Y; Bulone V; Plummer KM; Sutherland PW; Anderson MA; Bradshaw RE; Mesarich CH Microbiol Spectr; 2023 Jun; 11(3):e0421922. PubMed ID: 37039647 [TBL] [Abstract][Full Text] [Related]
5. Genetic mapping of 14 avirulence genes in an EU-B04 × 1639 progeny of Venturia inaequalis. Broggini GA; Bus VG; Parravicini G; Kumar S; Groenwold R; Gessler C Fungal Genet Biol; 2011 Feb; 48(2):166-76. PubMed ID: 20837155 [TBL] [Abstract][Full Text] [Related]
6. Candidate effector gene identification in the ascomycete fungal phytopathogen Venturia inaequalis by expressed sequence tag analysis. Bowen JK; Mesarich CH; Rees-George J; Cui W; Fitzgerald A; Win J; Plummer KM; Templeton MD Mol Plant Pathol; 2009 May; 10(3):431-48. PubMed ID: 19400844 [TBL] [Abstract][Full Text] [Related]
7. The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740-7A. Bus VG; Laurens FN; van de Weg WE; Rusholme RL; Rikkerink EH; Gardiner SE; Bassett HC; Kodde LP; Plummer KM New Phytol; 2005 Jun; 166(3):1035-49. PubMed ID: 15869661 [TBL] [Abstract][Full Text] [Related]
8. De novo transcriptome sequencing and analysis for Venturia inaequalis, the devastating apple scab pathogen. Thakur K; Chawla V; Bhatti S; Swarnkar MK; Kaur J; Shankar R; Jha G PLoS One; 2013; 8(1):e53937. PubMed ID: 23349770 [TBL] [Abstract][Full Text] [Related]
9. Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Bus VG; Rikkerink EH; Caffier V; Durel CE; Plummer KM Annu Rev Phytopathol; 2011; 49():391-413. PubMed ID: 21599495 [TBL] [Abstract][Full Text] [Related]
10. Population structure of Venturia inaequalis, a hemibiotrophic fungus, under different host resistance specificities in the Kashmir valley. Dar MS; Padder BA; Ahmad M; Sofi TA; Mir AA; Nabi A; Shah MD Arch Microbiol; 2020 Oct; 202(8):2245-2253. PubMed ID: 32533207 [TBL] [Abstract][Full Text] [Related]
11. Gene expression profiling by cDNA-AFLP reveals potential candidate genes for partial resistance of 'Président Roulin' against Venturia inaequalis. Bastiaanse H; Muhovski Y; Parisi O; Paris R; Mingeot D; Lateur M BMC Genomics; 2014 Nov; 15():1043. PubMed ID: 25433532 [TBL] [Abstract][Full Text] [Related]
12. Cisgenic Rvi6 scab-resistant apple lines show no differences in Rvi6 transcription when compared with conventionally bred cultivars. Chizzali C; Gusberti M; Schouten HJ; Gessler C; Broggini GA Planta; 2016 Mar; 243(3):635-44. PubMed ID: 26586177 [TBL] [Abstract][Full Text] [Related]
13. The Venturia apple pathosystem: pathogenicity mechanisms and plant defense responses. Jha G; Thakur K; Thakur P J Biomed Biotechnol; 2009; 2009():680160. PubMed ID: 20150969 [TBL] [Abstract][Full Text] [Related]
14. Hybridizations Between Caffier V; Shiller J; Bellanger MN; Collemare J; Expert P; Gladieux P; Pascouau C; Sannier M; Le Cam B Phytopathology; 2022 Jul; 112(7):1401-1405. PubMed ID: 35080437 [TBL] [Abstract][Full Text] [Related]
15. The Rvi15 (Vr2) apple scab resistance locus contains three TIR-NBS-LRR genes. Galli P; Patocchi A; Broggini GA; Gessler C Mol Plant Microbe Interact; 2010 May; 23(5):608-17. PubMed ID: 20367469 [TBL] [Abstract][Full Text] [Related]
16. CRISPR-Cas9 gene editing and rapid detection of gene-edited mutants using high-resolution melting in the apple scab fungus, Venturia inaequalis. Rocafort M; Arshed S; Hudson D; Sidhu JS; Bowen JK; Plummer KM; Bradshaw RE; Johnson RD; Johnson LJ; Mesarich CH Fungal Biol; 2022 Jan; 126(1):35-46. PubMed ID: 34930557 [TBL] [Abstract][Full Text] [Related]
17. Construction of a contig of BAC clones spanning the region of the apple scab avirulence gene AvrVg. Broggini GA; Le Cam B; Parisi L; Wu C; Zhang HB; Gessler C; Patocchi A Fungal Genet Biol; 2007 Jan; 44(1):44-51. PubMed ID: 16904351 [TBL] [Abstract][Full Text] [Related]
18. Population Genome Sequencing of the Scab Fungal Species Le Cam B; Sargent D; Gouzy J; Amselem J; Bellanger MN; Bouchez O; Brown S; Caffier V; De Gracia M; Debuchy R; Duvaux L; Payen T; Sannier M; Shiller J; Collemare J; Lemaire C G3 (Bethesda); 2019 Aug; 9(8):2405-2414. PubMed ID: 31253647 [TBL] [Abstract][Full Text] [Related]
19. Two novel Venturia inaequalis genes induced upon morphogenetic differentiation during infection and in vitro growth on cellophane. Kucheryava N; Bowen JK; Sutherland PW; Conolly JJ; Mesarich CH; Rikkerink EH; Kemen E; Plummer KM; Hahn M; Templeton MD Fungal Genet Biol; 2008 Oct; 45(10):1329-39. PubMed ID: 18692586 [TBL] [Abstract][Full Text] [Related]
20. Exogenous dsRNA trigger RNAi in Venturia inaequalis resulting in down regulation of target genes and growth reduction. Bhagta S; Bhardwaj V; Kant A Mol Biol Rep; 2023 Oct; 50(10):8421-8429. PubMed ID: 37620739 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]