BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

720 related articles for article (PubMed ID: 21199947)

  • 1. A structural and functional ground plan for neurons in the hindbrain of zebrafish.
    Kinkhabwala A; Riley M; Koyama M; Monen J; Satou C; Kimura Y; Higashijima S; Fetcho J
    Proc Natl Acad Sci U S A; 2011 Jan; 108(3):1164-9. PubMed ID: 21199947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping a sensory-motor network onto a structural and functional ground plan in the hindbrain.
    Koyama M; Kinkhabwala A; Satou C; Higashijima S; Fetcho J
    Proc Natl Acad Sci U S A; 2011 Jan; 108(3):1170-5. PubMed ID: 21199937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing the hindbrain: insights from the zebrafish.
    Moens CB; Prince VE
    Dev Dyn; 2002 May; 224(1):1-17. PubMed ID: 11984869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Features of the structure, development, and activity of the zebrafish noradrenergic system explored in new CRISPR transgenic lines.
    Farrar MJ; Kolkman KE; Fetcho JR
    J Comp Neurol; 2018 Oct; 526(15):2493-2508. PubMed ID: 30070695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A circuit motif in the zebrafish hindbrain for a two alternative behavioral choice to turn left or right.
    Koyama M; Minale F; Shum J; Nishimura N; Schaffer CB; Fetcho JR
    Elife; 2016 Aug; 5():. PubMed ID: 27502742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal development and migration in zebrafish hindbrain explants.
    Bingham SM; Toussaint G; Chandrasekhar A
    J Neurosci Methods; 2005 Nov; 149(1):42-9. PubMed ID: 15970334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional architecture underlying binocular coordination of eye position and velocity in the larval zebrafish hindbrain.
    Brysch C; Leyden C; Arrenberg AB
    BMC Biol; 2019 Dec; 17(1):110. PubMed ID: 31884959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhombomere boundaries are Wnt signaling centers that regulate metameric patterning in the zebrafish hindbrain.
    Riley BB; Chiang MY; Storch EM; Heck R; Buckles GR; Lekven AC
    Dev Dyn; 2004 Oct; 231(2):278-91. PubMed ID: 15366005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple mechanisms mediate motor neuron migration in the zebrafish hindbrain.
    Bingham SM; Sittaramane V; Mapp O; Patil S; Prince VE; Chandrasekhar A
    Dev Neurobiol; 2010 Feb; 70(2):87-99. PubMed ID: 19937772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging the functional organization of zebrafish hindbrain segments during escape behaviors.
    O'Malley DM; Kao YH; Fetcho JR
    Neuron; 1996 Dec; 17(6):1145-55. PubMed ID: 8982162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish.
    Liu KS; Fetcho JR
    Neuron; 1999 Jun; 23(2):325-35. PubMed ID: 10399938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A functional interaction between Irx and Meis patterns the anterior hindbrain and activates krox20 expression in rhombomere 3.
    Stedman A; Lecaudey V; Havis E; Anselme I; Wassef M; Gilardi-Hebenstreit P; Schneider-Maunoury S
    Dev Biol; 2009 Mar; 327(2):566-77. PubMed ID: 19152797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FGF3 and FGF8 mediate a rhombomere 4 signaling activity in the zebrafish hindbrain.
    Maves L; Jackman W; Kimmel CB
    Development; 2002 Aug; 129(16):3825-37. PubMed ID: 12135921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A single cell transcriptome atlas of the developing zebrafish hindbrain.
    Tambalo M; Mitter R; Wilkinson DG
    Development; 2020 Mar; 147(6):. PubMed ID: 32094115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Independent roles for retinoic acid in segmentation and neuronal differentiation in the zebrafish hindbrain.
    Linville A; Gumusaneli E; Chandraratna RA; Schilling TF
    Dev Biol; 2004 Jun; 270(1):186-99. PubMed ID: 15136149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between hindbrain and spinal networks during the development of locomotion in zebrafish.
    Chong M; Drapeau P
    Dev Neurobiol; 2007 Jun; 67(7):933-47. PubMed ID: 17506502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural and genotypic scaffold underlying temporal integration.
    Lee MM; Arrenberg AB; Aksay ER
    J Neurosci; 2015 May; 35(20):7903-20. PubMed ID: 25995475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axonal patterns and targets of dA1 interneurons in the chick hindbrain.
    Kohl A; Hadas Y; Klar A; Sela-Donenfeld D
    J Neurosci; 2012 Apr; 32(17):5757-71. PubMed ID: 22539838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. bHLH transcription factor Her5 links patterning to regional inhibition of neurogenesis at the midbrain-hindbrain boundary.
    Geling A; Itoh M; Tallafuss A; Chapouton P; Tannhäuser B; Kuwada JY; Chitnis AB; Bally-Cuif L
    Development; 2003 Apr; 130(8):1591-604. PubMed ID: 12620984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioral Role of the Reciprocal Inhibition between a Pair of Mauthner Cells during Fast Escapes in Zebrafish.
    Shimazaki T; Tanimoto M; Oda Y; Higashijima SI
    J Neurosci; 2019 Feb; 39(7):1182-1194. PubMed ID: 30578342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.