BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

663 related articles for article (PubMed ID: 21203455)

  • 21. TET2-mediated 5-hydroxymethylcytosine induces genetic instability and mutagenesis.
    Mahfoudhi E; Talhaoui I; Cabagnols X; Della Valle V; Secardin L; Rameau P; Bernard OA; Ishchenko AA; Abbes S; Vainchenker W; Saparbaev M; Plo I
    DNA Repair (Amst); 2016 Jul; 43():78-88. PubMed ID: 27289557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cross-region reduction in 5-hydroxymethylcytosine in Alzheimer's disease brain.
    Condliffe D; Wong A; Troakes C; Proitsi P; Patel Y; Chouliaras L; Fernandes C; Cooper J; Lovestone S; Schalkwyk L; Mill J; Lunnon K
    Neurobiol Aging; 2014 Aug; 35(8):1850-4. PubMed ID: 24679604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine.
    Cadet J; Wagner JR
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Apr; 764-765():18-35. PubMed ID: 24045206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Decreased 5-hydroxymethylcytosine levels correlate with cancer progression and poor survival: a systematic review and meta-analysis.
    Chen Z; Shi X; Guo L; Li Y; Luo M; He J
    Oncotarget; 2017 Jan; 8(1):1944-1952. PubMed ID: 27911867
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidized C5-methyl cytosine bases in DNA: 5-Hydroxymethylcytosine; 5-formylcytosine; and 5-carboxycytosine.
    Klungland A; Robertson AB
    Free Radic Biol Med; 2017 Jun; 107():62-68. PubMed ID: 27890639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GADD45a physically and functionally interacts with TET1.
    Kienhöfer S; Musheev MU; Stapf U; Helm M; Schomacher L; Niehrs C; Schäfer A
    Differentiation; 2015; 90(1-3):59-68. PubMed ID: 26546041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional impacts of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine at a single hemi-modified CpG dinucleotide in a gene promoter.
    Kitsera N; Allgayer J; Parsa E; Geier N; Rossa M; Carell T; Khobta A
    Nucleic Acids Res; 2017 Nov; 45(19):11033-11042. PubMed ID: 28977475
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation and determination of the oxidation products of 5-methylcytosine in RNA.
    Huang W; Lan MD; Qi CB; Zheng SJ; Wei SZ; Yuan BF; Feng YQ
    Chem Sci; 2016 Aug; 7(8):5495-5502. PubMed ID: 30034689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrophilic material for the selective enrichment of 5-hydroxymethylcytosine and its liquid chromatography-tandem mass spectrometry detection.
    Tang Y; Chu JM; Huang W; Xiong J; Xing XW; Zhou X; Feng YQ; Yuan BF
    Anal Chem; 2013 Jun; 85(12):6129-35. PubMed ID: 23678980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Maintenance DNA Methyltransferase Activity in the Presence of Oxidized Forms of 5-Methylcytosine: Structural Basis for Ten Eleven Translocation-Mediated DNA Demethylation.
    Seiler CL; Fernandez J; Koerperich Z; Andersen MP; Kotandeniya D; Nguyen ME; Sham YY; Tretyakova NY
    Biochemistry; 2018 Oct; 57(42):6061-6069. PubMed ID: 30230311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantification of DNA Modifications Using Two-Dimensional Ultraperformance Liquid Chromatography Tandem Mass Spectrometry (2D-UPLC-MS/MS).
    Starczak M; Gawronski M; Olinski R; Gackowski D
    Methods Mol Biol; 2021; 2198():91-108. PubMed ID: 32822025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine.
    Yu M; Hon GC; Szulwach KE; Song CX; Jin P; Ren B; He C
    Nat Protoc; 2012 Dec; 7(12):2159-70. PubMed ID: 23196972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heavy Metals Induce Decline of Derivatives of 5-Methycytosine in Both DNA and RNA of Stem Cells.
    Xiong J; Liu X; Cheng QY; Xiao S; Xia LX; Yuan BF; Feng YQ
    ACS Chem Biol; 2017 Jun; 12(6):1636-1643. PubMed ID: 28448110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of 5-Carboxylcytosine Distribution Using DNA Immunoprecipitation.
    Abakir A; Alenezi F; Ruzov A
    Methods Mol Biol; 2021; 2198():311-319. PubMed ID: 32822041
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Chemical Model of a TET Enzyme for Selective Oxidation of Hydroxymethyl Cytosine to Formyl Cytosine.
    Palit D; Kundu S; Pain PK; Sarma R; Manna D
    Inorg Chem; 2023 Jul; 62(26):10039-10043. PubMed ID: 37339080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing.
    Huang Y; Pastor WA; Shen Y; Tahiliani M; Liu DR; Rao A
    PLoS One; 2010 Jan; 5(1):e8888. PubMed ID: 20126651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mass spectrometry reveals the presence of specific set of epigenetic DNA modifications in the Norway spruce genome.
    Yakovlev IA; Gackowski D; Abakir A; Viejo M; Ruzov A; Olinski R; Starczak M; Fossdal CG; Krutovsky KV
    Sci Rep; 2019 Dec; 9(1):19314. PubMed ID: 31848418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A sensitive mass spectrometry method for simultaneous quantification of DNA methylation and hydroxymethylation levels in biological samples.
    Le T; Kim KP; Fan G; Faull KF
    Anal Biochem; 2011 May; 412(2):203-9. PubMed ID: 21272560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the absolute level of epigenetic marks 5-methylcytosine, 5-hydroxymethylcytosine, and 5-hydroxymethyluracil between human leukocytes and sperm.
    Guz J; Gackowski D; Foksinski M; Rozalski R; Olinski R
    Biol Reprod; 2014 Sep; 91(3):55. PubMed ID: 25061097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age-dependent levels of 5-methyl-, 5-hydroxymethyl-, and 5-formylcytosine in human and mouse brain tissues.
    Wagner M; Steinbacher J; Kraus TF; Michalakis S; Hackner B; Pfaffeneder T; Perera A; Müller M; Giese A; Kretzschmar HA; Carell T
    Angew Chem Int Ed Engl; 2015 Oct; 54(42):12511-4. PubMed ID: 26137924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.