BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 21203489)

  • 1. Development of an in vivo RNAi protocol to investigate gene function in the filarial nematode, Brugia malayi.
    Song C; Gallup JM; Day TA; Bartholomay LC; Kimber MJ
    PLoS Pathog; 2010 Dec; 6(12):e1001239. PubMed ID: 21203489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of RNA interference to investigate gene function in the human filarial nematode parasite Brugia malayi.
    Aboobaker AA; Blaxter ML
    Mol Biochem Parasitol; 2003 Jun; 129(1):41-51. PubMed ID: 12798505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional analysis of the cathepsin-like cysteine protease genes in adult Brugia malayi using RNA interference.
    Ford L; Zhang J; Liu J; Hashmi S; Fuhrman JA; Oksov Y; Lustigman S
    PLoS Negl Trop Dis; 2009; 3(2):e377. PubMed ID: 19190745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient in vitro RNA interference and immunofluorescence-based phenotype analysis in a human parasitic nematode, Brugia malayi.
    Landmann F; Foster JM; Slatko BE; Sullivan W
    Parasit Vectors; 2012 Jan; 5():16. PubMed ID: 22243803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and functional diversification of chemosensory pathway receptors in mosquito-borne filarial nematodes.
    Wheeler NJ; Heimark ZW; Airs PM; Mann A; Bartholomay LC; Zamanian M
    PLoS Biol; 2020 Jun; 18(6):e3000723. PubMed ID: 32511224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A gene family of cathepsin L-like proteases of filarial nematodes are associated with larval molting and cuticle and eggshell remodeling.
    Guiliano DB; Hong X; McKerrow JH; Blaxter ML; Oksov Y; Liu J; Ghedin E; Lustigman S
    Mol Biochem Parasitol; 2004 Aug; 136(2):227-42. PubMed ID: 15478801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DEVELOPMENT OF AN IN VITRO RNAI TO INVESTIGATE GENE FUNCTION IN BRUGIA MALAYI.
    Farghaly AM; Abd El-Hai Afify H; Abd El-Raouf Taha A; Mostafa E
    J Egypt Soc Parasitol; 2016 Dec; 46(3):717-728. PubMed ID: 30230767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bma-LAD-2, an Intestinal Cell Adhesion Protein, as a Potential Therapeutic Target for Lymphatic Filariasis.
    Flynn AF; Taylor RT; Pazgier ME; Bennuru S; Lindrose AR; Sterling SL; Morris CP; Gleeson BI; Maugel TK; Nutman TB; Mitre E
    mBio; 2022 Jun; 13(3):e0374221. PubMed ID: 35475643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological Profiling of a Brugia malayi Muscarinic Acetylcholine Receptor as a Putative Antiparasitic Target.
    Gallo KJ; Wheeler NJ; Elmi AM; Airs PM; Zamanian M
    Antimicrob Agents Chemother; 2023 Jan; 67(1):e0118822. PubMed ID: 36602350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomes of parasitic nematodes (Meloidogyne hapla, Meloidogyne incognita, Ascaris suum and Brugia malayi) have a reduced complement of small RNA interference pathway genes: knockdown can reduce host infectivity of M. incognita.
    Iqbal S; Fosu-Nyarko J; Jones MG
    Funct Integr Genomics; 2016 Jul; 16(4):441-57. PubMed ID: 27126863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular vesicles secreted by Brugia malayi microfilariae modulate the melanization pathway in the mosquito host.
    Loghry HJ; Kwon H; Smith RC; Sondjaja NA; Minkler SJ; Young S; Wheeler NJ; Zamanian M; Bartholomay LC; Kimber MJ
    Sci Rep; 2023 May; 13(1):8778. PubMed ID: 37258694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mining predicted essential genes of Brugia malayi for nematode drug targets.
    Kumar S; Chaudhary K; Foster JM; Novelli JF; Zhang Y; Wang S; Spiro D; Ghedin E; Carlow CK
    PLoS One; 2007 Nov; 2(11):e1189. PubMed ID: 18000556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heme acquisition in the parasitic filarial nematode Brugia malayi.
    Luck AN; Yuan X; Voronin D; Slatko BE; Hamza I; Foster JM
    FASEB J; 2016 Oct; 30(10):3501-3514. PubMed ID: 27363426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immune evasion genes from filarial nematodes.
    Maizels RM; Gomez-Escobar N; Gregory WF; Murray J; Zang X
    Int J Parasitol; 2001 Jul; 31(9):889-98. PubMed ID: 11406138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mosquito transcriptome profiles and filarial worm susceptibility in Armigeres subalbatus.
    Aliota MT; Fuchs JF; Rocheleau TA; Clark AK; Hillyer JF; Chen CC; Christensen BM
    PLoS Negl Trop Dis; 2010 Apr; 4(4):e666. PubMed ID: 20421927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immune responses of Aedes togoi, Anopheles paraliae and Anopheles lesteri against nocturnally subperiodic Brugia malayi microfilariae during migration from the midgut to the site of development.
    Dedkhad W; Christensen BM; Bartholomay LC; Joshi D; Hempolchom C; Saeung A
    Parasit Vectors; 2018 Sep; 11(1):528. PubMed ID: 30261926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and bioinformatic identification of small RNAs in the filarial nematode, Brugia malayi.
    Poole CB; Davis PJ; Jin J; McReynolds LA
    Mol Biochem Parasitol; 2010 Feb; 169(2):87-94. PubMed ID: 19874857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolving the origins of secretory products and anthelmintic responses in a human parasitic nematode at single-cell resolution.
    Henthorn CR; Airs PM; Neumann EK; Zamanian M
    Elife; 2023 Jun; 12():. PubMed ID: 37318129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentially expressed, abundant trans-spliced cDNAs from larval Brugia malayi.
    Gregory WF; Blaxter ML; Maizels RM
    Mol Biochem Parasitol; 1997 Jul; 87(1):85-95. PubMed ID: 9233676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mosquito transcriptome changes and filarial worm resistance in Armigeres subalbatus.
    Aliota MT; Fuchs JF; Mayhew GF; Chen CC; Christensen BM
    BMC Genomics; 2007 Dec; 8():463. PubMed ID: 18088420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.