These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 21203510)
21. In vitro human chondrocyte culture on plasma-treated poly(glycerol sebacate) scaffolds. Theerathanagorn T; Klangjorhor J; Sakulsombat M; Pothacharoen P; Pruksakorn D; Kongtawelert P; Janvikul W J Biomater Sci Polym Ed; 2015; 26(18):1386-401. PubMed ID: 26387514 [TBL] [Abstract][Full Text] [Related]
22. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds. Samourides A; Browning L; Hearnden V; Chen B Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110384. PubMed ID: 31924046 [TBL] [Abstract][Full Text] [Related]
23. Seamless tubular poly(glycerol sebacate) scaffolds: high-yield fabrication and potential applications. Crapo PM; Gao J; Wang Y J Biomed Mater Res A; 2008 Aug; 86(2):354-63. PubMed ID: 17969024 [TBL] [Abstract][Full Text] [Related]
24. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161 [TBL] [Abstract][Full Text] [Related]
25. Mechanical characterization and non-linear elastic modeling of poly(glycerol sebacate) for soft tissue engineering. Mitsak AG; Dunn AM; Hollister SJ J Mech Behav Biomed Mater; 2012 Jul; 11():3-15. PubMed ID: 22658150 [TBL] [Abstract][Full Text] [Related]
26. Bioactive electrospun fibers of poly(glycerol sebacate) and poly(ε-caprolactone) for cardiac patch application. Rai R; Tallawi M; Frati C; Falco A; Gervasi A; Quaini F; Roether JA; Hochburger T; Schubert DW; Seik L; Barbani N; Lazzeri L; Rosellini E; Boccaccini AR Adv Healthc Mater; 2015 Sep; 4(13):2012-25. PubMed ID: 26270628 [TBL] [Abstract][Full Text] [Related]
27. Poly (glycerol sebacate) elastomer supports osteogenic phenotype for bone engineering applications. Zaky SH; Hangadora CK; Tudares MA; Gao J; Jensen A; Wang Y; Sfeir C; Almarza AJ Biomed Mater; 2014 Apr; 9(2):025003. PubMed ID: 24487088 [TBL] [Abstract][Full Text] [Related]
28. Elastomeric PGS scaffolds in arterial tissue engineering. Lee KW; Wang Y J Vis Exp; 2011 Apr; (50):. PubMed ID: 21505410 [TBL] [Abstract][Full Text] [Related]
29. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Chen QZ; Bismarck A; Hansen U; Junaid S; Tran MQ; Harding SE; Ali NN; Boccaccini AR Biomaterials; 2008 Jan; 29(1):47-57. PubMed ID: 17915309 [TBL] [Abstract][Full Text] [Related]
30. Poly(Glycerol sebacate)/gelatin core/shell fibrous structure for regeneration of myocardial infarction. Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Ramakrishna S Tissue Eng Part A; 2011 May; 17(9-10):1363-73. PubMed ID: 21247338 [TBL] [Abstract][Full Text] [Related]
31. Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering. Frydrych M; Román S; MacNeil S; Chen B Acta Biomater; 2015 May; 18():40-9. PubMed ID: 25769230 [TBL] [Abstract][Full Text] [Related]
33. Control the Mechanical Properties and Degradation of Poly(Glycerol Sebacate) by Substitution of the Hydroxyl Groups with Palmitates. Ding X; Chen Y; Chao CA; Wu YL; Wang Y Macromol Biosci; 2020 Sep; 20(9):e2000101. PubMed ID: 33448652 [TBL] [Abstract][Full Text] [Related]
34. The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites. Liang SL; Cook WD; Thouas GA; Chen QZ Biomaterials; 2010 Nov; 31(33):8516-29. PubMed ID: 20739061 [TBL] [Abstract][Full Text] [Related]
35. Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for Cardiac tissue engineering. Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Sridhar R; Ramakrishna S Int J Cardiol; 2013 Aug; 167(4):1461-8. PubMed ID: 22564386 [TBL] [Abstract][Full Text] [Related]
36. Enhanced osteogenic proliferation and differentiation of human adipose-derived stem cells on a porous n-HA/PGS-M composite scaffold. Wang Y; Sun N; Zhang Y; Zhao B; Zhang Z; Zhou X; Zhou Y; Liu H; Zhang Y; Liu J Sci Rep; 2019 May; 9(1):7960. PubMed ID: 31138861 [TBL] [Abstract][Full Text] [Related]
37. Valvular interstitial cell seeded poly(glycerol sebacate) scaffolds: toward a biomimetic in vitro model for heart valve tissue engineering. Masoumi N; Johnson KL; Howell MC; Engelmayr GC Acta Biomater; 2013 Apr; 9(4):5974-88. PubMed ID: 23295404 [TBL] [Abstract][Full Text] [Related]
38. Poly(glycerol sebacate)/poly(butylene succinate-butylene dilinoleate) fibrous scaffolds for cardiac tissue engineering. Tallawi M; Zebrowski DC; Rai R; Roether JA; Schubert DW; El Fray M; Engel FB; Aifantis KE; Boccaccini AR Tissue Eng Part C Methods; 2015 Jun; 21(6):585-96. PubMed ID: 25439964 [TBL] [Abstract][Full Text] [Related]
39. Manipulation of mechanical compliance of elastomeric PGS by incorporation of halloysite nanotubes for soft tissue engineering applications. Chen QZ; Liang SL; Wang J; Simon GP J Mech Behav Biomed Mater; 2011 Nov; 4(8):1805-18. PubMed ID: 22098880 [TBL] [Abstract][Full Text] [Related]
40. β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering. Yang K; Zhang J; Ma X; Ma Y; Kan C; Ma H; Li Y; Yuan Y; Liu C Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():37-47. PubMed ID: 26249563 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]