These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Influence of Si distribution in framework of SAPO-34 and its particle size on propylene selectivity and production rate for conversion of ethylene to propylene. Iwase Y; Motokura K; Koyama TR; Miyaji A; Baba T Phys Chem Chem Phys; 2009 Oct; 11(40):9268-77. PubMed ID: 19812848 [TBL] [Abstract][Full Text] [Related]
3. Comparative Synthesis and Characterization of Nanostructured SAPO-34 Using TEA and Morpholine: Effect of Mono vs. Dual Template on Catalytic Properties and Performance toward Methanol to Light Olefins. Aghamohammadi S; Haghighi M; Sadeghpour P; Souri T Comb Chem High Throughput Screen; 2021; 24(4):509-520. PubMed ID: 32928082 [TBL] [Abstract][Full Text] [Related]
4. Development and application of FI catalysts for olefin polymerization: unique catalysis and distinctive polymer formation. Makio H; Fujita T Acc Chem Res; 2009 Oct; 42(10):1532-44. PubMed ID: 19588950 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and Applications of SAPO-34 Molecular Sieves. Yu W; Wu X; Cheng B; Tao T; Min X; Mi R; Huang Z; Fang M; Liu Y Chemistry; 2022 Feb; 28(11):e202102787. PubMed ID: 34961998 [TBL] [Abstract][Full Text] [Related]
6. Recent Progress in Methanol-to-Olefins (MTO) Catalysts. Yang M; Fan D; Wei Y; Tian P; Liu Z Adv Mater; 2019 Dec; 31(50):e1902181. PubMed ID: 31496008 [TBL] [Abstract][Full Text] [Related]
7. Theoretical insights on methylbenzene side-chain growth in ZSM-5 zeolites for methanol-to-olefin conversion. Lesthaeghe D; Horré A; Waroquier M; Marin GB; Van Speybroeck V Chemistry; 2009 Oct; 15(41):10803-8. PubMed ID: 19746483 [TBL] [Abstract][Full Text] [Related]
8. High-Yield Synthesis of Hierarchical SAPO-34 by Recrystallization Method for Efficient Methanol-to-Olefin Reactions. Wu Y; Zhang J; Shi Z; Chen C; Yue X; Sun Q Chem Asian J; 2024 Aug; 19(15):e202400436. PubMed ID: 38753576 [TBL] [Abstract][Full Text] [Related]
9. Further Studies on How the Nature of Zeolite Cavities That Are Bounded by Small Pores Influences the Conversion of Methanol to Light Olefins. Kang JH; Walter R; Xie D; Davis T; Chen CY; Davis ME; Zones SI Chemphyschem; 2018 Feb; 19(4):412-419. PubMed ID: 29211929 [TBL] [Abstract][Full Text] [Related]
10. The beneficial use of ultrasound in synthesis of nanostructured Ce-doped SAPO-34 used in methanol conversion to light olefins. Charghand M; Haghighi M; Aghamohammadi S Ultrason Sonochem; 2014 Sep; 21(5):1827-38. PubMed ID: 24704064 [TBL] [Abstract][Full Text] [Related]
11. Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling. Cheng K; Gu B; Liu X; Kang J; Zhang Q; Wang Y Angew Chem Int Ed Engl; 2016 Apr; 55(15):4725-8. PubMed ID: 26961855 [TBL] [Abstract][Full Text] [Related]
12. Catalytic Longevity of Hierarchical SAPO-34/AlMCM-41 Nanocomposite Molecular Sieve In Methanol-to-Olefins Process. Roohollahi H; Halladj R; Askari S Comb Chem High Throughput Screen; 2021; 24(4):521-533. PubMed ID: 32342811 [TBL] [Abstract][Full Text] [Related]
13. N-methyldiethanolamine: a multifunctional structure-directing agent for the synthesis of SAPO and AlPO molecular sieves. Wang D; Tian P; Fan D; Yang M; Gao B; Qiao Y; Wang C; Liu Z J Colloid Interface Sci; 2015 May; 445():119-126. PubMed ID: 25616250 [TBL] [Abstract][Full Text] [Related]
14. Enhanced catalytic performance of copper-exchanged SAPO-34 molecular sieve in methanol-to-olefin reaction. Kim SJ; Park JW; Lee KY; Seo G; Song MK; Jeong SY J Nanosci Nanotechnol; 2010 Jan; 10(1):147-57. PubMed ID: 20352825 [TBL] [Abstract][Full Text] [Related]
15. Composite Nanostructure of Manganese Cluster and CHA-Type Silicoaluminaphosphates: Enhanced Catalytic Performance in Dimethylether to Light Olefins Conversion. Ping G; Zheng K; Fang Q; Li G Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33374279 [TBL] [Abstract][Full Text] [Related]
16. Mesoporogen-Free Synthesis of Hierarchical SAPO-34 with Low Template Consumption and Excellent Methanol-to-Olefin Conversion. Sun Q; Wang N; Bai R; Chen G; Shi Z; Zou Y; Yu J ChemSusChem; 2018 Nov; 11(21):3812-3820. PubMed ID: 30178630 [TBL] [Abstract][Full Text] [Related]
17. Performance analysis of ultrasound-assisted synthesized nano-hierarchical SAPO-34 catalyst in the methanol-to-lights-olefins process via artificial intelligence methods. Azarhoosh MJ; Halladj R; Askari S; Aghaeinejad-Meybodi A Ultrason Sonochem; 2019 Nov; 58():104646. PubMed ID: 31450297 [TBL] [Abstract][Full Text] [Related]
18. Presenting a Four-Lump Dynamic Kinetic Model for Methanol to Light Olefins Process Over the Hierarchical SAPO-34 Catalyst Using Power Law Models. Azarhoosh MJ; Azarhoosh AR Comb Chem High Throughput Screen; 2021; 24(4):570-580. PubMed ID: 32933454 [TBL] [Abstract][Full Text] [Related]
19. Design Synthesis of Low-Silica SAPO-34 Nanocrystals by Constructing Isomorphous Core-Shell Structure: An Effective Catalyst for Improving Catalytic Performances in Methanol-to-Olefins Reaction. Wang Q; Dai W; Dai Y; Pan M; Liu Y; Zhang L; Zheng J; Liu X; Li R; Ma L; Wang H; Zong Y ACS Appl Mater Interfaces; 2024 Mar; 16(11):14308-14320. PubMed ID: 38456610 [TBL] [Abstract][Full Text] [Related]
20. Coke formation and carbon atom economy of methanol-to-olefins reaction. Wei Y; Yuan C; Li J; Xu S; Zhou Y; Chen J; Wang Q; Xu L; Qi Y; Zhang Q; Liu Z ChemSusChem; 2012 May; 5(5):906-12. PubMed ID: 22359363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]