These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 21203621)
21. Can Metal Promotion of SAPO-34 Genuinely Improve Its Catalytic Performance in Methanol Conversion to Light Olefins Reaction? Ghavipour M; Al Hussami R; Nasser G; Kopyscinski J Chemphyschem; 2024 Dec; 25(24):e202400357. PubMed ID: 39230638 [TBL] [Abstract][Full Text] [Related]
22. Hydroisomerization of n-Hexadecane Over Nickel-Modified SAPO-11 Molecular Sieve-Supported NiWS Catalysts: Effects of Modification Methods. Dai X; Cheng Y; Si M; Wei Q; Zhou Y Front Chem; 2022; 10():857473. PubMed ID: 35464196 [TBL] [Abstract][Full Text] [Related]
23. Catalysts for the Conversion of CO Pawelec B; Guil-López R; Mota N; Fierro JLG; Navarro Yerga RM Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832354 [TBL] [Abstract][Full Text] [Related]
24. Ru(II) catalysts supported by hydridotris(pyrazolyl)borate for the hydroarylation of olefins: reaction scope, mechanistic studies, and guides for the development of improved catalysts. Foley NA; Lee JP; Ke Z; Gunnoe TB; Cundari TR Acc Chem Res; 2009 May; 42(5):585-97. PubMed ID: 19296659 [TBL] [Abstract][Full Text] [Related]
25. Enhanced ethylene and ethane production with free-radical cracking catalysts. Kolts JH; Delzer GA Science; 1986 May; 232(4751):744-6. PubMed ID: 17769569 [TBL] [Abstract][Full Text] [Related]
26. Synthesis of a novel nano-rod-shaped hierarchical silicoaluminophosphate SAPO-11 molecular sieve with enhanced hydroisomerization of oleic acid to iso-alkanes. Yang L; Li H; Fu JY; Li M; Miao C; Wang Z; Lv P; Yuan Z RSC Adv; 2019 Oct; 9(59):34457-34464. PubMed ID: 35529960 [TBL] [Abstract][Full Text] [Related]
27. A trifunctional catalyst for one-pot synthesis of chiral diols via Heck coupling-N-oxidation-asymmetric dihydroxylation: application for the synthesis of diltiazem and taxol side chain. Choudary BM; Chowdari NS; Madhi S; Kantam ML J Org Chem; 2003 Mar; 68(5):1736-46. PubMed ID: 12608786 [TBL] [Abstract][Full Text] [Related]
28. Conditions for the Joint Conversion of CO Portillo A; Ateka A; Ereña J; Aguayo AT; Bilbao J Ind Eng Chem Res; 2022 Jul; 61(29):10365-10376. PubMed ID: 35915619 [TBL] [Abstract][Full Text] [Related]
29. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Olsbye U; Svelle S; Bjørgen M; Beato P; Janssens TV; Joensen F; Bordiga S; Lillerud KP Angew Chem Int Ed Engl; 2012 Jun; 51(24):5810-31. PubMed ID: 22511469 [TBL] [Abstract][Full Text] [Related]
30. One-Pot Conversion of Methane to Light Olefins or Higher Hydrocarbons through H-SAPO-34-Catalyzed in Situ Halogenation. Batamack PTD; Mathew T; Prakash GKS J Am Chem Soc; 2017 Dec; 139(49):18078-18083. PubMed ID: 29199824 [TBL] [Abstract][Full Text] [Related]
31. Life Time Improvement of Hierarchically Structured SAPO-34 Nanocatalyst in MTO Reaction Yazdanpanah R; Moradiyan E; Halladj R; Askari S Comb Chem High Throughput Screen; 2021; 24(4):534-545. PubMed ID: 32342812 [TBL] [Abstract][Full Text] [Related]
32. Visible light-induced partial oxidation of olefins on Cr-containing silica with molecular oxygen. Shiraishi Y; Teshima Y; Hirai T J Phys Chem B; 2006 Mar; 110(12):6257-63. PubMed ID: 16553442 [TBL] [Abstract][Full Text] [Related]
33. Space- and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. Mores D; Stavitski E; Kox MH; Kornatowski J; Olsbye U; Weckhuysen BM Chemistry; 2008; 14(36):11320-7. PubMed ID: 19021162 [TBL] [Abstract][Full Text] [Related]
34. Mechanistic studies of olefin and alkyne trimerization with chromium catalysts: deuterium labeling and studies of regiochemistry using a model chromacyclopentane complex. Agapie T; Labinger JA; Bercaw JE J Am Chem Soc; 2007 Nov; 129(46):14281-95. PubMed ID: 17973377 [TBL] [Abstract][Full Text] [Related]
35. Directed transforming of coke to active intermediates in methanol-to-olefins catalyst to boost light olefins selectivity. Zhou J; Gao M; Zhang J; Liu W; Zhang T; Li H; Xu Z; Ye M; Liu Z Nat Commun; 2021 Jan; 12(1):17. PubMed ID: 33397957 [TBL] [Abstract][Full Text] [Related]
36. The mechanism of methanol to hydrocarbon catalysis. Haw JF; Song W; Marcus DM; Nicholas JB Acc Chem Res; 2003 May; 36(5):317-26. PubMed ID: 12755641 [TBL] [Abstract][Full Text] [Related]
37. Influence of the Reaction Temperature on the Nature of the Active and Deactivating Species During Methanol-to-Olefins Conversion over H-SAPO-34. Borodina E; Sharbini Harun Kamaluddin H; Meirer F; Mokhtar M; Asiri AM; Al-Thabaiti SA; Basahel SN; Ruiz-Martinez J; Weckhuysen BM ACS Catal; 2017 Aug; 7(8):5268-5281. PubMed ID: 28824823 [TBL] [Abstract][Full Text] [Related]
38. Key role of the pore volume of zeolite for selective production of propylene from olefins. Koyama TR; Hayashi Y; Horie H; Kawauchi S; Matsumoto A; Iwase Y; Sakamoto Y; Miyaji A; Motokura K; Baba T Phys Chem Chem Phys; 2010 Mar; 12(11):2541-54. PubMed ID: 20200730 [TBL] [Abstract][Full Text] [Related]
39. Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution. Li Z; Martínez-Triguero J; Concepción P; Yu J; Corma A Phys Chem Chem Phys; 2013 Sep; 15(35):14670-80. PubMed ID: 23897003 [TBL] [Abstract][Full Text] [Related]
40. Design of a core-shell catalyst: an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins. Tan L; Wang F; Zhang P; Suzuki Y; Wu Y; Chen J; Yang G; Tsubaki N Chem Sci; 2020 Mar; 11(16):4097-4105. PubMed ID: 34122875 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]