BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21203846)

  • 1. Linear and nonlinear viscoelastic modeling of aorta and carotid pressure-area dynamics under in vivo and ex vivo conditions.
    Valdez-Jasso D; Bia D; Zócalo Y; Armentano RL; Haider MA; Olufsen MS
    Ann Biomed Eng; 2011 May; 39(5):1438-56. PubMed ID: 21203846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear and nonlinear viscoelastic modeling of ovine aortic biomechanical properties under in vivo and ex vivo conditions.
    Valdez-Jasso D; Bia D; Haider MA; Zocalo Y; Armentano RL; Olufsen MS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2634-7. PubMed ID: 21096186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of viscoelastic wall properties in ovine arteries.
    Valdez-Jasso D; Haider MA; Banks HT; Bia Santana D; Zócalo Germán Y; Armentano RL; Olufsen MS
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):210-9. PubMed ID: 19272946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic characterization of human descending thoracic aortas under cyclic load.
    Franchini G; Breslavsky ID; Holzapfel GA; Amabili M
    Acta Biomater; 2021 Aug; 130():291-307. PubMed ID: 34082105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constituent-based quasi-linear viscoelasticity: a revised quasi-linear modelling framework to capture nonlinear viscoelasticity in arteries.
    Giudici A; van der Laan KWF; van der Bruggen MM; Parikh S; Berends E; Foulquier S; Delhaas T; Reesink KD; Spronck B
    Biomech Model Mechanobiol; 2023 Oct; 22(5):1607-1623. PubMed ID: 37129690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational hemodynamics in arteries with the one-dimensional augmented fluid-structure interaction system: viscoelastic parameters estimation and comparison with in-vivo data.
    Bertaglia G; Navas-Montilla A; Valiani A; Monge García MI; Murillo J; Caleffi V
    J Biomech; 2020 Feb; 100():109595. PubMed ID: 31911051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A log-linearized arterial viscoelastic model for evaluation of the carotid artery.
    Hirano H; Horiuchi T; Kutluk A; Kurita Y; Ukawa T; Nakamura R; Saeki N; Higashi Y; Kawamoto M; Yoshizumi M; Tsuji T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2591-4. PubMed ID: 24110257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain-dependent stress relaxation behavior of healthy right ventricular free wall.
    Liu W; Labus KM; Ahern M; LeBar K; Avazmohammadi R; Puttlitz CM; Wang Z
    Acta Biomater; 2022 Oct; 152():290-299. PubMed ID: 36030049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the accuracy of displacement-based wave intensity analysis: Effect of vessel wall viscoelasticity and nonlinearity.
    Kang J; Aghilinejad A; Pahlevan NM
    PLoS One; 2019; 14(11):e0224390. PubMed ID: 31675382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear and Nonlinear Viscoelastic Arterial Wall Models: Application on Animals.
    Ghigo AR; Wang XF; Armentano R; Fullana JM; Lagrée PY
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27685359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the arterial wall by finite elements.
    Mosora F; Harmant A; Bernard C; Fossion A; Pochet T; Juchmes J; Cescotto S
    Arch Int Physiol Biochim Biophys; 1993; 101(3):185-91. PubMed ID: 7691211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A viscoelastic fluid-structure interaction model for carotid arteries under pulsatile flow.
    Wang Z; Wood NB; Xu XY
    Int J Numer Method Biomed Eng; 2015 May; 31(5):e02709. PubMed ID: 25630788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of the material properties of natural and synthetic vascular walls.
    Askari F; Shafieian M; Solouk A; Hashemi A
    J Mech Behav Biomed Mater; 2017 Jul; 71():209-215. PubMed ID: 28347955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Descending aorta subject-specific one-dimensional model validated against in vivo data.
    Bollache E; Kachenoura N; Redheuil A; Frouin F; Mousseaux E; Recho P; Lucor D
    J Biomech; 2014 Jan; 47(2):424-31. PubMed ID: 24290136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of elastic properties of homogeneous, orthotropic vascular segments in distension.
    Vorp DA; Rajagopal KR; Smolinski PJ; Borovetz HS
    J Biomech; 1995 May; 28(5):501-12. PubMed ID: 7775487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of vessel wall morphology and function in the aorta and the carotid artery: an evaluation with MRI.
    Kröner ES; Lamb HJ; Siebelink HM; Putter H; van der Geest RJ; van der Wall EE; de Roos A; Westenberg JJ
    Int J Cardiovasc Imaging; 2014 Jan; 30(1):91-8. PubMed ID: 24170260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic fractional viscoelastic constitutive models for human descending thoracic aortas.
    Amabili M; Balasubramanian P; Breslavsky I
    J Mech Behav Biomed Mater; 2019 Nov; 99():186-197. PubMed ID: 31362261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear mechanical behavior of the human common, external, and internal carotid arteries in vivo.
    Kamenskiy AV; Dzenis YA; MacTaggart JN; Lynch TG; Jaffar Kazmi SA; Pipinos II
    J Surg Res; 2012 Jul; 176(1):329-36. PubMed ID: 22099586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arterial mechanics in the fin whale suggest a unique hemodynamic design.
    Shadwick RE; Gosline JM
    Am J Physiol; 1994 Sep; 267(3 Pt 2):R805-18. PubMed ID: 8092327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.