BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 2120412)

  • 1. Cerebral blood flow and carbon dioxide reactivity in children with bacterial meningitis.
    Ashwal S; Stringer W; Tomasi L; Schneider S; Thompson J; Perkin R
    J Pediatr; 1990 Oct; 117(4):523-30. PubMed ID: 2120412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CBF and CBF/PCO2 reactivity in childhood strangulation.
    Ashwal S; Perkin RM; Thompson JR; Tomasi LG; van Stralen D; Schneider S
    Pediatr Neurol; 1991; 7(5):369-74. PubMed ID: 1764140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional cerebrovascular and metabolic effects of hyperventilation after severe traumatic brain injury.
    Diringer MN; Videen TO; Yundt K; Zazulia AR; Aiyagari V; Dacey RG; Grubb RL; Powers WJ
    J Neurosurg; 2002 Jan; 96(1):103-8. PubMed ID: 11794590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury.
    Rosenthal G; Sanchez-Mejia RO; Phan N; Hemphill JC; Martin C; Manley GT
    J Neurosurg; 2011 Jan; 114(1):62-70. PubMed ID: 20707619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial meningitis in children: pathophysiology and treatment.
    Ashwal S; Tomasi L; Schneider S; Perkin R; Thompson J
    Neurology; 1992 Apr; 42(4):739-48. PubMed ID: 1565225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain hyperperfusion during cardiac operations. Cerebral blood flow measured in man by intra-arterial injection of xenon 133: evidence suggestive of intraoperative microembolism.
    Henriksen L; Hjelms E; Lindeburgh T
    J Thorac Cardiovasc Surg; 1983 Aug; 86(2):202-8. PubMed ID: 6410125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional cerebral blood flow during hyperventilation in patients with acute bacterial meningitis.
    Møller K; Høgh P; Larsen FS; Strauss GI; Skinhøj P; Sperling BK; Knudsen GM
    Clin Physiol; 2000 Sep; 20(5):399-410. PubMed ID: 10971552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of cerebrovascular autoregulation in experimental meningitis in rabbits.
    Tureen JH; Dworkin RJ; Kennedy SL; Sachdeva M; Sande MA
    J Clin Invest; 1990 Feb; 85(2):577-81. PubMed ID: 2105342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intact cerebral blood flow reactivity during remifentanil/nitrous oxide anesthesia.
    Baker KZ; Ostapkovich N; Sisti MB; Warner DS; Young WL
    J Neurosurg Anesthesiol; 1997 Apr; 9(2):134-40. PubMed ID: 9100182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral blood flow autoregulation in the rat.
    Hernández MJ; Brennan RW; Bowman GS
    Stroke; 1978; 9(2):150-4. PubMed ID: 644608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vasoparalysis associated with brain damage in asphyxiated term infants.
    Pryds O; Greisen G; Lou H; Friis-Hansen B
    J Pediatr; 1990 Jul; 117(1 Pt 1):119-25. PubMed ID: 2115079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebrovascular reactivity to carbon dioxide is not influenced by variability in the ventilatory sensitivity to carbon dioxide.
    Howe CA; Caldwell HG; Carr J; Nowak-Flück D; Ainslie PN; Hoiland RL
    Exp Physiol; 2020 May; 105(5):904-915. PubMed ID: 32091142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral blood flow requirement for brain viability in newborn infants is lower than in adults.
    Altman DI; Powers WJ; Perlman JM; Herscovitch P; Volpe SL; Volpe JJ
    Ann Neurol; 1988 Aug; 24(2):218-26. PubMed ID: 3263081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of changing cerebral blood flow by use of the conjunctival oxygen tension/arterial oxygen tension index.
    Rutherford WF; Panacek EA; Griffith JK; Green JA; Munger M; Bednarczyk E; Miraldi F; Fisher CJ
    Crit Care Med; 1989 Dec; 17(12):1328-32. PubMed ID: 2512052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of transient moderate hyperventilation on dynamic cerebral autoregulation after severe head injury.
    Newell DW; Weber JP; Watson R; Aaslid R; Winn HR
    Neurosurgery; 1996 Jul; 39(1):35-43; discussion 43-4. PubMed ID: 8805138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional cerebrovascular reactivity to carbon dioxide during cardiopulmonary bypass in patients with cerebrovascular disease.
    Gravlee GP; Roy RC; Stump DA; Hudspeth AS; Rogers AT; Prough DS
    J Thorac Cardiovasc Surg; 1990 Jun; 99(6):1022-9. PubMed ID: 2113599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The response of the canine cerebral circulation to hyperventilation during anesthesia with desflurane.
    Lutz LJ; Milde JH; Milde LN
    Anesthesiology; 1991 Mar; 74(3):504-7. PubMed ID: 1900397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of CBF and CMRO2 using the continuous inhalation of C15O2 and 15O. Experimental validation using CO2 reactivity in the anaesthetised dog.
    Rhodes CG; Lenzi GL; Frackowiak RS; Jones T; Pozzilli C
    J Neurol Sci; 1981 Jun; 50(3):381-9. PubMed ID: 6790677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of short-term hyperventilation on cerebral blood flow autoregulation in patients with acute bacterial meningitis.
    Møller K; Skinhøj P; Knudsen GM; Larsen FS
    Stroke; 2000 May; 31(5):1116-22. PubMed ID: 10797174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperventilation-induced reduction in cerebral blood flow: assessment by positron emission tomography.
    Bednarczyk EM; Rutherford WF; Leisure GP; Munger MA; Panacek EA; Miraldi FD; Green JA
    DICP; 1990 May; 24(5):456-60. PubMed ID: 2343589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.