BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21204566)

  • 1. Highly conductive graphene nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor.
    Kosynkin DV; Lu W; Sinitskii A; Pera G; Sun Z; Tour JM
    ACS Nano; 2011 Feb; 5(2):968-74. PubMed ID: 21204566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalized graphene nanoribbons via anionic polymerization initiated by alkali metal-intercalated carbon nanotubes.
    Lu W; Ruan G; Genorio B; Zhu Y; Novosel B; Peng Z; Tour JM
    ACS Nano; 2013 Mar; 7(3):2669-75. PubMed ID: 23390896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced electrochemical lithium storage by graphene nanoribbons.
    Bhardwaj T; Antic A; Pavan B; Barone V; Fahlman BD
    J Am Chem Soc; 2010 Sep; 132(36):12556-8. PubMed ID: 20731378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.
    Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A
    Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of nitrogen-doped graphene nanoribbons via chemical unzipping.
    Cruz-Silva R; Morelos-Gómez A; Vega-Díaz S; Tristán-López F; Elias AL; Perea-López N; Muramatsu H; Hayashi T; Fujisawa K; Kim YA; Endo M; Terrones M
    ACS Nano; 2013 Mar; 7(3):2192-204. PubMed ID: 23421313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Splitting of a vertical multiwalled carbon nanotube carpet to a graphene nanoribbon carpet and its use in supercapacitors.
    Zhang C; Peng Z; Lin J; Zhu Y; Ruan G; Hwang CC; Lu W; Hauge RH; Tour JM
    ACS Nano; 2013 Jun; 7(6):5151-9. PubMed ID: 23672653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene nanoribbons obtained by electrically unwrapping carbon nanotubes.
    Kim K; Sussman A; Zettl A
    ACS Nano; 2010 Mar; 4(3):1362-6. PubMed ID: 20131856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Counter-ion dependent, longitudinal unzipping of multi-walled carbon nanotubes to highly conductive and transparent graphene nanoribbons.
    Shinde DB; Majumder M; Pillai VK
    Sci Rep; 2014 Mar; 4():4363. PubMed ID: 24621526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes.
    Higginbotham AL; Kosynkin DV; Sinitskii A; Sun Z; Tour JM
    ACS Nano; 2010 Apr; 4(4):2059-69. PubMed ID: 20201538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Helical and Dendritic Unzipping of Carbon Nanotubes: A Route to Nitrogen-Doped Graphene Nanoribbons.
    Zehtab Yazdi A; Chizari K; Jalilov AS; Tour J; Sundararaj U
    ACS Nano; 2015 Jun; 9(6):5833-45. PubMed ID: 26028162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties.
    Xie L; Wang H; Jin C; Wang X; Jiao L; Suenaga K; Dai H
    J Am Chem Soc; 2011 Jul; 133(27):10394-7. PubMed ID: 21678963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.
    Terrones M
    ACS Nano; 2010 Apr; 4(4):1775-81. PubMed ID: 20420468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for the synthesis of graphene, graphene nanoribbons, nanoscrolls and related materials.
    Maitra U; Matte HS; Kumar P; Rao CN
    Chimia (Aarau); 2012; 66(12):941-8. PubMed ID: 23394279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced electrochemical performance by unfolding a few wings of graphene nanoribbons of multiwalled carbon nanotubes as an anode material for Li ion battery applications.
    Sahoo M; Ramaprabhu S
    Nanoscale; 2015 Aug; 7(32):13379-86. PubMed ID: 26203785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene nanoribbon composites.
    Rafiee MA; Lu W; Thomas AV; Zandiatashbar A; Rafiee J; Tour JM; Koratkar NA
    ACS Nano; 2010 Dec; 4(12):7415-20. PubMed ID: 21080652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte.
    Wang J; Manga KK; Bao Q; Loh KP
    J Am Chem Soc; 2011 Jun; 133(23):8888-91. PubMed ID: 21557613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Step-templated CVD growth of aligned graphene nanoribbons supported by a single-layer graphene film.
    Ago H; Ito Y; Tsuji M; Ikeda K
    Nanoscale; 2012 Aug; 4(16):5178-82. PubMed ID: 22806442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective etching of graphene edges by hydrogen plasma.
    Xie L; Jiao L; Dai H
    J Am Chem Soc; 2010 Oct; 132(42):14751-3. PubMed ID: 20923144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation.
    Zhang LL; Xiong Z; Zhao XS
    ACS Nano; 2010 Nov; 4(11):7030-6. PubMed ID: 21028785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids.
    Lu J; Yang JX; Wang J; Lim A; Wang S; Loh KP
    ACS Nano; 2009 Aug; 3(8):2367-75. PubMed ID: 19702326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.