These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21204566)

  • 41. Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 Sep; 20(37):375704. PubMed ID: 19706941
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis of a pillared graphene nanostructure: a counterpart of three-dimensional carbon architectures.
    Paul RK; Ghazinejad M; Penchev M; Lin J; Ozkan M; Ozkan CS
    Small; 2010 Oct; 6(20):2309-13. PubMed ID: 20862676
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-throughput synthesis of graphene by intercalation-exfoliation of graphite oxide and study of ionic screening in graphene transistor.
    Ang PK; Wang S; Bao Q; Thong JT; Loh KP
    ACS Nano; 2009 Nov; 3(11):3587-94. PubMed ID: 19788171
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transparent, highly conductive graphene electrodes from acetylene-assisted thermolysis of graphite oxide sheets and nanographene molecules.
    Liang Y; Frisch J; Zhi L; Norouzi-Arasi H; Feng X; Rabe JP; Koch N; Müllen K
    Nanotechnology; 2009 Oct; 20(43):434007. PubMed ID: 19801755
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single-step synthesis and magnetic separation of graphene and carbon nanotubes in arc discharge plasmas.
    Volotskova O; Levchenko I; Shashurin A; Raitses Y; Ostrikov K; Keidar M
    Nanoscale; 2010 Oct; 2(10):2281-5. PubMed ID: 20714656
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transition-metal-catalyzed unzipping of single-walled carbon nanotubes into narrow graphene nanoribbons at low temperature.
    Wang J; Ma L; Yuan Q; Zhu L; Ding F
    Angew Chem Int Ed Engl; 2011 Aug; 50(35):8041-5. PubMed ID: 21761515
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A molecular simulation analysis of producing monatomic carbon chains by stretching ultranarrow graphene nanoribbons.
    Qi Z; Zhao F; Zhou X; Sun Z; Park HS; Wu H
    Nanotechnology; 2010 Jul; 21(26):265702. PubMed ID: 20522927
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adsorption of Cisplatin on Oxidized Graphene Nanoribbons for Improving the Uptake in Non-small Cell Lung Carcinoma Cell Line A549.
    Augustine S; Prabhakar B; Shende P
    Curr Drug Deliv; 2022; 19(6):697-705. PubMed ID: 34238188
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A structural stability diagram of multiple vacancies and defect self-healing in graphene.
    Wang L; Yan F; Chan HL; Ding F
    Nanoscale; 2012 Dec; 4(23):7489-93. PubMed ID: 23099435
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polymer-derived ceramic composite fibers with aligned pristine multiwalled carbon nanotubes.
    Sarkar S; Zou J; Liu J; Xu C; An L; Zhai L
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1150-6. PubMed ID: 20423134
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Magnetism of substitutional Fe impurities in graphene nanoribbons.
    Longo RC; Carrete J; Gallego LJ
    J Chem Phys; 2011 Jan; 134(2):024704. PubMed ID: 21241143
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.
    Randeniya LK; Bendavid A; Martin PJ; Tran CD
    Small; 2010 Aug; 6(16):1806-11. PubMed ID: 20665629
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes.
    Sheng GD; Shao DD; Ren XM; Wang XQ; Li JX; Chen YX; Wang XK
    J Hazard Mater; 2010 Jun; 178(1-3):505-16. PubMed ID: 20153109
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electron transport properties of atomic carbon nanowires between graphene electrodes.
    Shen L; Zeng M; Yang SW; Zhang C; Wang X; Feng Y
    J Am Chem Soc; 2010 Aug; 132(33):11481-6. PubMed ID: 20677763
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Controlled carbon-nanotube junctions self-assembled from graphene nanoribbons.
    He L; Lu JQ; Jiang H
    Small; 2009 Dec; 5(24):2802-6. PubMed ID: 19927297
    [No Abstract]   [Full Text] [Related]  

  • 56. Percolation scaling in composites of exfoliated MoS2 filled with nanotubes and graphene.
    Cunningham G; Lotya M; McEvoy N; Duesberg GS; van der Schoot P; Coleman JN
    Nanoscale; 2012 Oct; 4(20):6260-4. PubMed ID: 22961125
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nitrene addition to exfoliated graphene: a one-step route to highly functionalized graphene.
    Strom TA; Dillon EP; Hamilton CE; Barron AR
    Chem Commun (Camb); 2010 Jun; 46(23):4097-9. PubMed ID: 20458401
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrically conductive bacterial cellulose by incorporation of carbon nanotubes.
    Yoon SH; Jin HJ; Kook MC; Pyun YR
    Biomacromolecules; 2006 Apr; 7(4):1280-4. PubMed ID: 16602750
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selective adsorption and alignment behaviors of double- and multiwalled carbon nanotubes on bare Au and SiO2 surfaces.
    Im J; Kang J; Lee M; Kim B; Hong S
    J Phys Chem B; 2006 Jul; 110(26):12839-42. PubMed ID: 16805578
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functionalized single graphene sheets derived from splitting graphite oxide.
    Schniepp HC; Li JL; McAllister MJ; Sai H; Herrera-Alonso M; Adamson DH; Prud'homme RK; Car R; Saville DA; Aksay IA
    J Phys Chem B; 2006 May; 110(17):8535-9. PubMed ID: 16640401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.