These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 21204580)
1. Effects of nano zero-valent iron on oxidation-reduction potential. Shi Z; Nurmi JT; Tratnyek PG Environ Sci Technol; 2011 Feb; 45(4):1586-92. PubMed ID: 21204580 [TBL] [Abstract][Full Text] [Related]
2. Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation. Shi Z; Fan D; Johnson RL; Tratnyek PG; Nurmi JT; Wu Y; Williams KH J Contam Hydrol; 2015 Oct; 181():17-35. PubMed ID: 25841976 [TBL] [Abstract][Full Text] [Related]
3. Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Li Z; Greden K; Alvarez PJ; Gregory KB; Lowry GV Environ Sci Technol; 2010 May; 44(9):3462-7. PubMed ID: 20355703 [TBL] [Abstract][Full Text] [Related]
4. Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study. Wei YT; Wu SC; Chou CM; Che CH; Tsai SM; Lien HL Water Res; 2010 Jan; 44(1):131-40. PubMed ID: 19800096 [TBL] [Abstract][Full Text] [Related]
5. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid. Kim HS; Ahn JY; Kim C; Lee S; Hwang I Chemosphere; 2014 Oct; 113():93-100. PubMed ID: 25065795 [TBL] [Abstract][Full Text] [Related]
6. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Reinsch BC; Forsberg B; Penn RL; Kim CS; Lowry GV Environ Sci Technol; 2010 May; 44(9):3455-61. PubMed ID: 20380376 [TBL] [Abstract][Full Text] [Related]
7. Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron. Dong H; Lo IM Water Res; 2013 Jan; 47(1):419-27. PubMed ID: 23123051 [TBL] [Abstract][Full Text] [Related]
8. Field Deployable Chemical Redox Probe for Quantitative Characterization of Carboxymethylcellulose Modified Nano Zerovalent Iron. Fan D; Chen S; Johnson RL; Tratnyek PG Environ Sci Technol; 2015 Sep; 49(17):10589-97. PubMed ID: 26218836 [TBL] [Abstract][Full Text] [Related]
9. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Kirschling TL; Gregory KB; Minkley EG; Lowry GV; Tilton RD Environ Sci Technol; 2010 May; 44(9):3474-80. PubMed ID: 20350000 [TBL] [Abstract][Full Text] [Related]
10. Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron. Johnson RL; Nurmi JT; O'Brien Johnson GS; Fan D; O'Brien Johnson RL; Shi Z; Salter-Blanc AJ; Tratnyek PG; Lowry GV Environ Sci Technol; 2013 Feb; 47(3):1573-80. PubMed ID: 23311327 [TBL] [Abstract][Full Text] [Related]
11. Influences of nanoscale zero valent iron loadings and bicarbonate and calcium concentrations on hydrogen evolution in anaerobic column experiments. Paar H; Ruhl AS; Jekel M Water Res; 2015 Jan; 68():731-9. PubMed ID: 25462777 [TBL] [Abstract][Full Text] [Related]
12. Influence of electrolyte and voltage on the direct current enhanced transport of iron nanoparticles in clay. Gomes HI; Dias-Ferreira C; Ribeiro AB; Pamukcu S Chemosphere; 2014 Mar; 99():171-9. PubMed ID: 24252496 [TBL] [Abstract][Full Text] [Related]
13. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. Fagerlund F; Illangasekare TH; Phenrat T; Kim HJ; Lowry GV J Contam Hydrol; 2012 Apr; 131(1-4):9-28. PubMed ID: 22326687 [TBL] [Abstract][Full Text] [Related]
14. Effects of nitrate on the treatment of lead contaminated groundwater by nanoscale zerovalent iron. Su Y; Adeleye AS; Zhou X; Dai C; Zhang W; Keller AA; Zhang Y J Hazard Mater; 2014 Sep; 280():504-13. PubMed ID: 25209830 [TBL] [Abstract][Full Text] [Related]
15. Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups. Jiang Z; Lv L; Zhang W; Du Q; Pan B; Yang L; Zhang Q Water Res; 2011 Mar; 45(6):2191-8. PubMed ID: 21316071 [TBL] [Abstract][Full Text] [Related]
16. A fabrication strategy for nanosized zero valent iron (nZVI)-polymeric anion exchanger composites with tunable structure for nitrate reduction. Jiang Z; Zhang S; Pan B; Wang W; Wang X; Lv L; Zhang W; Zhang Q J Hazard Mater; 2012 Sep; 233-234():1-6. PubMed ID: 22795842 [TBL] [Abstract][Full Text] [Related]
17. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Chen J; Xiu Z; Lowry GV; Alvarez PJ Water Res; 2011 Feb; 45(5):1995-2001. PubMed ID: 21232782 [TBL] [Abstract][Full Text] [Related]
18. Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate. Krajangpan S; Bermudez JJ; Bezbaruah AN; Chisholm BJ; Khan E Water Sci Technol; 2008; 58(11):2215-22. PubMed ID: 19092199 [TBL] [Abstract][Full Text] [Related]
19. Toxicity of nano-zero valent iron to freshwater and marine organisms. Keller AA; Garner K; Miller RJ; Lenihan HS PLoS One; 2012; 7(8):e43983. PubMed ID: 22952836 [TBL] [Abstract][Full Text] [Related]
20. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review. Xie Y; Dong H; Zeng G; Tang L; Jiang Z; Zhang C; Deng J; Zhang L; Zhang Y J Hazard Mater; 2017 Jan; 321():390-407. PubMed ID: 27669380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]