BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 21204614)

  • 1. Stem cell niches and other factors that influence the sensitivity of bone marrow to radiation-induced bone cancer and leukaemia in children and adults.
    Richardson RB
    Int J Radiat Biol; 2011 Apr; 87(4):343-59. PubMed ID: 21204614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative comparisons of cancer induction in humans by internally deposited radionuclides and external radiation.
    Harrison JD; Muirhead CR
    Int J Radiat Biol; 2003 Jan; 79(1):1-13. PubMed ID: 12556326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in understanding the leukaemia microenvironment.
    Tabe Y; Konopleva M
    Br J Haematol; 2014 Mar; 164(6):767-78. PubMed ID: 24405087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study.
    Pearce MS; Salotti JA; Little MP; McHugh K; Lee C; Kim KP; Howe NL; Ronckers CM; Rajaraman P; Sir Craft AW; Parker L; Berrington de González A
    Lancet; 2012 Aug; 380(9840):499-505. PubMed ID: 22681860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiation dose to trabecular bone marrow stem cells from (3)H, (14)C and selected alpha-emitters incorporated in a bone remodeling compartment.
    Nie H; Richardson RB
    Phys Med Biol; 2009 Feb; 54(4):963-79. PubMed ID: 19147899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets.
    Dant JT; Richardson RB; Nie LH
    Phys Med Biol; 2013 May; 58(10):3301-19. PubMed ID: 23615276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiation-induced leukemia at doses relevant to radiation therapy: modeling mechanisms and estimating risks.
    Shuryak I; Sachs RK; Hlatky L; Little MP; Hahnfeldt P; Brenner DJ
    J Natl Cancer Inst; 2006 Dec; 98(24):1794-806. PubMed ID: 17179481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aspects of the dosimetry of alpha-emitting radionuclides in bone with particular emphasis on 226Ra and 239Pu.
    Thorne MC
    Phys Med Biol; 1977 Jan; 22(1):36-46. PubMed ID: 265072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron absorbed fractions and dose conversion factors for marrow and bone by skeletal regions.
    Eckerman KF; Stabin MG
    Health Phys; 2000 Feb; 78(2):199-214. PubMed ID: 10647986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure to ionizing radiation and development of bone sarcoma: new insights based on atomic-bomb survivors of Hiroshima and Nagasaki.
    Samartzis D; Nishi N; Hayashi M; Cologne J; Cullings HM; Kodama K; Miles EF; Funamoto S; Suyama A; Soda M; Kasagi F
    J Bone Joint Surg Am; 2011 Jun; 93(11):1008-15. PubMed ID: 21984980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumorigenic target cell regions in bone marrow studied by localized dosimetry of 239Pu, 241Am and 233U in the mouse femur.
    Lord BI; Austin AL; Ellender M; Haines JW; Harrison JD
    Int J Radiat Biol; 2001 Jun; 77(6):665-78. PubMed ID: 11403706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer and non-cancer effects in Japanese atomic bomb survivors.
    Little MP
    J Radiol Prot; 2009 Jun; 29(2A):A43-59. PubMed ID: 19454804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiocrine signals regulate quiescence and therapy resistance in bone metastasis.
    Singh A; Veeriah V; Xi P; Labella R; Chen J; Romeo SG; Ramasamy SK; Kusumbe AP
    JCI Insight; 2019 Jul; 4(13):. PubMed ID: 31292293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular and perivascular niches, but not the osteoblastic niche, are numerically restored following allogeneic hematopoietic stem cell transplantation in patients with aplastic anemia.
    Wu L; Mo W; Zhang Y; Zhou M; Li Y; Zhou R; Xu S; Pan S; Deng H; Mao P; Wang S
    Int J Hematol; 2017 Jul; 106(1):71-81. PubMed ID: 28303517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The endosteal 'osteoblastic' niche and its role in hematopoietic stem cell homing and mobilization.
    Lévesque JP; Helwani FM; Winkler IG
    Leukemia; 2010 Dec; 24(12):1979-92. PubMed ID: 20861913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The stem cell niches in bone.
    Yin T; Li L
    J Clin Invest; 2006 May; 116(5):1195-201. PubMed ID: 16670760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similarities Between Stem Cell Niches in Glioblastoma and Bone Marrow: Rays of Hope for Novel Treatment Strategies.
    Hira VVV; Breznik B; Vittori M; Loncq de Jong A; Mlakar J; Oostra RJ; Khurshed M; Molenaar RJ; Lah T; Van Noorden CJF
    J Histochem Cytochem; 2020 Jan; 68(1):33-57. PubMed ID: 31566074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibroblast growth factor 2 supports osteoblastic niche cells during hematopoietic homeostasis recovery after bone marrow suppression.
    Yoon KA; Son Y; Choi YJ; Kim JH; Cho JY
    Cell Commun Signal; 2017 Jun; 15(1):25. PubMed ID: 28662672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping bone marrow niches of disseminated tumor cells.
    Zhang W; Lo HC; Zhang XH
    Sci China Life Sci; 2017 Oct; 60(10):1125-1132. PubMed ID: 29027156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microenvironmental regulation of hematopoietic stem cells and its implications in leukemogenesis.
    Seshadri M; Qu CK
    Curr Opin Hematol; 2016 Jul; 23(4):339-45. PubMed ID: 27071022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.